STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING

被引:3
|
作者
Chen, Zhengxin [1 ]
Zhao, Yu'e [2 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350007, Peoples R China
[2] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Upper triangular matrix Lie algebras; strong commutativity preserving maps; extremal inner automorphisms; idempotent scalar multiplications; INVERTIBLE LINEAR-MAPS; GENERALIZED DERIVATIONS; COMMUTING TRACES; AUTOMORPHISMS;
D O I
10.4134/BKMS.b200770
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity 1, n >= 3, and let T-n(R) be the linear Lie algebra of all upper triangular n x n matrices over R. A linear map phi on T-n(R) is called to be strong commutativity preserving if [phi(x), phi(y)] = [x, y] for any x, y is an element of T-n(R). We show that an invertible linear map phi preserves strong commutativity on T-n(R) if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on T-n(R).
引用
收藏
页码:973 / 981
页数:9
相关论文
共 50 条
  • [1] Strong commutativity preserving maps of strictly triangular matrix Lie algebras
    Chen, Zhengxin
    Liu, Hongjin
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (07)
  • [2] The group of commutativity preserving maps on upper triangular matrices over a commutative ring
    Wang, Dengyin
    Zhu, Min
    Lv, Wenping
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06): : 775 - 783
  • [3] Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras
    Marcoux, LW
    Sourour, AR
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 288 (1-3) : 89 - 104
  • [4] Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring
    Cao, YA
    [J]. JOURNAL OF ALGEBRA, 1997, 189 (02) : 506 - 513
  • [5] Strong (skew) xi-Lie commutativity preserving maps on algebras
    Gong, Lin
    Qi, Xiaofei
    Shao, Jie
    Zhang, Feifei
    [J]. COGENT MATHEMATICS, 2015, 2
  • [6] Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring
    Wang, Heng-Tai
    Li, Qing-Guo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 66 - 77
  • [7] Adjacency preserving maps on upper triangular matrix algebras
    Chooi, WL
    Lim, MH
    Semrl, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 367 : 105 - 130
  • [8] Maps on matrix algebras preserving commutativity
    Dolinar, G
    Semrl, P
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (01): : 69 - 78
  • [9] STRONG COMMUTATIVITY PRESERVING MAPS ON TRIANGULAR RINGS
    Qi, Xiaofei
    Hou, Jinchuan
    [J]. OPERATORS AND MATRICES, 2012, 6 (01): : 147 - 158
  • [10] Strong commutativity preserving maps on Lie ideals
    Lin, Jer-Shyong
    Liu, Cheng-Kai
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1601 - 1609