Geometry of Sasaki manifolds, Kahler cone manifolds and bi-harmonic submanifolds

被引:0
|
作者
Urakawa, Hajime [1 ]
机构
[1] Tohoku Univ, Div Math, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
Legendrian submanifold; Sasaki manifold; Lagrangian submanifold; Harmonic map; Bi-harmonic map; LAGRANGIAN SUBMANIFOLDS; LEGENDRIAN SUBMANIFOLDS; SPACE; HYPERSURFACES; MAPS;
D O I
10.1016/j.topol.2015.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Legendrian submanifold M of a Sasaki manifold N, we study harmonicity and bi-harmonicity of the corresponding Lagrangian cone submanifold C(M) of a Kahler manifold C(N). We show that, if C(M) is bi-harmonic in C(N), then it is harmonic; and M is proper hi-harmonic in N if and only if C(M) has a non-zero eigen-section of the Jacobi operator with the eigenvalue m = dim M. For more details, see [34]. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:1023 / 1032
页数:10
相关论文
共 50 条
  • [1] TRANSVERSE KAHLER GEOMETRY OF SASAKI MANIFOLDS AND TORIC SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Ono, Hajime
    Wang, Guofang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (03) : 585 - 635
  • [2] Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry
    Alekseevsky, Dmitri, V
    Ganji, Masoud
    Schmalz, Gerd
    Spiro, Andrea
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 75
  • [3] Separation of bi-harmonic differential operators on Riemannian manifolds
    Atia, Hany A.
    Alsaedi, Ramzi S.
    Ramady, Ahmed
    [J]. FORUM MATHEMATICUM, 2014, 26 (03) : 953 - 966
  • [4] Homogeneous locally conformally Kahler and Sasaki manifolds
    Alekseevsky, D. V.
    Cortes, V.
    Hasegawa, K.
    Kamishima, Y.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (06)
  • [5] Variational characterizations of invariant submanifolds in Sasaki manifolds
    Sun, Jun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
  • [6] Spinc geometry of Kahler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds
    Hijazi, O.
    Montiel, S.
    Urbano, F.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) : 821 - 853
  • [7] BIHARMONIC LAGRANGIAN SUBMANIFOLDS IN KAHLER MANIFOLDS
    Maeta, Shun
    Urakawa, Hajime
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (02) : 465 - 480
  • [8] Magnetic Bi-harmonic differential operators on Riemannian manifolds and the separation problem
    H. A. Atia
    [J]. Journal of Contemporary Mathematical Analysis, 2016, 51 : 222 - 226
  • [9] Magnetic Bi-harmonic differential operators on Riemannian manifolds and the separation problem
    Atia, H. A.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (05): : 222 - 226
  • [10] The Kahler geometry of Bott manifolds
    Boyer, Charles P.
    Calderbank, David M. J.
    Tonnesen-Friedman, Christina W.
    [J]. ADVANCES IN MATHEMATICS, 2019, 350 : 1 - 62