Variational characterizations of invariant submanifolds in Sasaki manifolds

被引:1
|
作者
Sun, Jun [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Invariant submanifold; Sasaki manifold; Variational characterization; Stationary; Stable;
D O I
10.1016/j.jmaa.2023.127373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we generalize our previous results in [4] and [5] from Kahler manifold to Sasaki manifold. We prove that for a submanifold tangent to the Reeb vector field in a Sasaki manifold, the area functional, as a functional of the ambient metrics, is stationary if and only if it is an invariant submanifold. We also show that if the submanifold has dimension 3, then it is basic stable if and only if it is an invariant submanifold.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Some Characterizations of Semi-Invariant Submanifolds of Golden Riemannian Manifolds
    Gok, Mustafa
    Keles, Sadik
    Kilic, Erol
    [J]. MATHEMATICS, 2019, 7 (12)
  • [2] Some characterizations of anti-invariant submanifolds of trans-sasakian manifolds
    Sarkar, A.
    Bhakta, Pradip
    Sen, Matilal
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)
  • [3] Deformations of special Legendrian submanifolds in Sasaki–Einstein manifolds
    Takayuki Moriyama
    [J]. Mathematische Zeitschrift, 2016, 283 : 1111 - 1147
  • [4] On minimal Legendrian submanifolds of Sasaki-Einstein manifolds
    Calamai, Simone
    Petrecca, David
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (09)
  • [5] Inequalities for submanifolds of Sasaki-like statistical manifolds
    Aytimur, Hulya
    Ozgur, Cihan
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) : 3149 - 3163
  • [6] Invariant submanifolds of Sasakian manifolds
    Karadag, H. Bayram
    Atceken, Mehmet
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2007, 12 (01): : 68 - 75
  • [7] On invariant submanifolds of Kenmotsu manifolds
    De, U. C.
    Majhi, Pradip
    [J]. JOURNAL OF GEOMETRY, 2015, 106 (01) : 109 - 122
  • [8] Invariant Submanifolds of (ε)-Sasakian Manifolds
    Prakasha, D. G.
    Vanli, Aysel T.
    Nagaraja, M.
    Veeresha, P.
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 346 - 356
  • [9] Invariant submanifolds of contact (κ, μ)-manifolds
    Cappelletti Montano, Beniamino
    Di Terlizzi, Luigia
    Tripathi, Mukut Mani
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2008, 50 : 499 - 507
  • [10] Geometry of Sasaki manifolds, Kahler cone manifolds and bi-harmonic submanifolds
    Urakawa, Hajime
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 1023 - 1032