Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry

被引:4
|
作者
Alekseevsky, Dmitri, V [1 ,2 ]
Ganji, Masoud [3 ]
Schmalz, Gerd [3 ]
Spiro, Andrea [4 ]
机构
[1] Inst Informat Transmiss Problems, B Karetny Per 19, Moscow 127051, Russia
[2] Univ Hradec Kralove, Fac Sci, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[3] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia
[4] Univ Camerino, Scuola Sci & Tecnol, Via Madonna Carceri, I-62032 Camerino, Italy
基金
澳大利亚研究理事会;
关键词
ROBINSON MANIFOLDS;
D O I
10.1016/j.difgeo.2021.101724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Lorentzian manifolds (M, g) of dimension n >= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -> S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] TRANSVERSE KAHLER GEOMETRY OF SASAKI MANIFOLDS AND TORIC SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Ono, Hajime
    Wang, Guofang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (03) : 585 - 635
  • [2] Kahler-Sasaki geometry of toric symplectic cones in action-angle coordinates
    Abreu, Miguel
    [J]. PORTUGALIAE MATHEMATICA, 2010, 67 (02) : 121 - 153
  • [3] A Note On Smale Manifolds and Lorentzian Sasaki-Einstein Geometry
    Gomez, Ralph R.
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 151 - 158
  • [4] Geometry of Sasaki manifolds, Kahler cone manifolds and bi-harmonic submanifolds
    Urakawa, Hajime
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 1023 - 1032
  • [5] Homogeneous locally conformally Kahler and Sasaki manifolds
    Alekseevsky, D. V.
    Cortes, V.
    Hasegawa, K.
    Kamishima, Y.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (06)
  • [6] Statistical Lorentzian geometry and the closeness of Lorentzian manifolds
    Bombelli, L
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 6944 - 6958
  • [7] The CR geometry of weighted extremal Kahler and Sasaki metrics
    Apostolov, Vestislav
    Calderbank, David M. J.
    [J]. MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1047 - 1088
  • [8] The Kahler geometry of Bott manifolds
    Boyer, Charles P.
    Calderbank, David M. J.
    Tonnesen-Friedman, Christina W.
    [J]. ADVANCES IN MATHEMATICS, 2019, 350 : 1 - 62
  • [9] On the geometry of nearly trans-Sasaki manifolds
    Kirichenko, VF
    [J]. DOKLADY MATHEMATICS, 2004, 70 (01) : 620 - 622
  • [10] Sasaki-Einstein manifolds and their spinorial geometry
    Kim, NW
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (02) : 197 - 201