Microwave-assisted flow synthesis of multicore iron oxide nanoparticles

被引:8
|
作者
Panariello, L. [1 ]
Besenhard, M. O. [1 ]
Damilos, S. [1 ]
Sergides, A. [2 ,6 ]
Sebastian, V. [3 ,4 ,5 ,6 ]
Irusta, S. [3 ,4 ,5 ]
Tang, J. [1 ]
Thanh, Nguyen Thi Kim [2 ,7 ]
Gavriilidis, A. [1 ]
机构
[1] UCL, Dept Chem Engn, Torrington Pl, London WC1E 7JE, England
[2] UCL, Dept Phys & Astron, Biophys Grp, Gower St, London WC1E 6BT, England
[3] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, Zaragoza 50009, Spain
[4] Univ Zaragoza, Dept Chem Engn, Campus Rio Ebro Edificio 1 D,C-Poeta Mariano Esqui, Zaragoza 50018, Spain
[5] CIBERBBN, Networking Res Ctr Bioengn Biomat & Nanomed, Madrid 28029, Spain
[6] Univ Zaragoza, Lab Microscopias Avanzadas, Zaragoza 50018, Spain
[7] UCL Healthcare Biomagnet & Nanomat Labs, 21 Albemarle St, London W1S 4BS, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Magnetic nanomaterials; Flow chemistry; Microwave heating; CHEMISTRY; MAGNETITE; COPRECIPITATION; MICROREACTORS; NUCLEATION; IMPACT; GROWTH; MRI;
D O I
10.1016/j.cep.2022.109198
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Coprecipitation is by far the most common synthesis method for iron oxide nanoparticles (IONPs). However, reproducibility and scalability represent a major challenge. Therefore, innovative processes for scalable pro-duction of IONPs are highly sought after. Here, we explored the combination of microwave heating with a flow reactor producing IONPs through coprecipitation. The synthesis was initially studied in a well-characterised microwave-heated flow system, enabling the synthesis of multicore IONPs, with control over both the single core size and the multicore hydrodynamic diameter. The effect of residence time and microwave power was investigated, enabling the synthesis of multicore nanostructures with hydrodynamic diameter between -35 and 70 nm, with single core size of 3-5 nm. Compared to particles produced under conventional heating, similar single core sizes were observed, though with smaller hydrodynamic diameters. The process comprised of the initial IONP coprecipitation followed by the addition of the stabiliser (citric acid and dextran). The ability of precisely controlling the stabiliser addition time (distinctive of flow reactors), contributed to the synthesis reproducibility. Finally, scale-up by increasing the reactor length and using a different microwave cavity was demonstrated, producing particles of similar structure as those from the small scale system, with a throughput of 3.3 g/h.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Tracking method for the microwave-assisted synthesis of silver nanoparticles
    Patrascu, M.
    Calinescu, I.
    Boscornea, C.
    Lacatusu, I.
    Martin, D.
    Ighigeanu, D.
    Vasile, E.
    Radoiu, M.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2011, 13 (5-6): : 666 - 671
  • [42] Microwave-assisted polyol process for synthesis of ni nanoparticles
    Li, DS
    Komarneni, S
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (05) : 1510 - 1517
  • [43] Fast Microwave-Assisted Synthesis of Uniform Magnetic Nanoparticles
    Kozakova, Z.
    Bazant, P.
    Machovsky, M.
    Babayan, V.
    Kuritka, I.
    ACTA PHYSICA POLONICA A, 2010, 118 (05) : 948 - 949
  • [44] Microwave-Assisted Synthesis of Selenium Nanoparticles: Bioactivity Insights
    Tisli, Buesra
    Nejati, Omid
    Torkay, Gulsah
    Giray, Betul
    Bal-Ozturk, Ayca
    Bakirdere, Sezgin
    CHEMISTRYSELECT, 2024, 9 (43):
  • [45] Facile Microwave-Assisted Synthesis of Zinc Oxide and Characterization
    Bhatta, L. K. Gopalakrishna
    Bhatta, U. M.
    Venkatesh, K.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2019, 78 (03): : 173 - 176
  • [46] Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers
    Wang, WW
    Zhu, YJ
    Cheng, GF
    Huang, YH
    MATERIALS LETTERS, 2006, 60 (05) : 609 - 612
  • [47] Microwave-assisted iron oxide process for efficient removal of tetracycline
    Sun, Ken
    Cheng, Fan
    Liu, Yuxuan
    Hua, Yufeng
    Zhang, Yifeng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 307
  • [48] Microwave-assisted Synthesis and Characterization of Zinc Oxide Micropowder
    Pookmanee, Pusit
    Makarunkamol, Supasima
    Satienperakul, Sakchai
    Kitikul, Jiraporn
    Phanichphant, Sukon
    FUNCTIONALIZED AND SENSING MATERIALS, 2010, 93-94 : 643 - +
  • [49] Microwave-assisted synthesis of nanocrystalline mesoporous gallium oxide
    Deshmane, Chinmay A.
    Jasinski, Jacek B.
    Carreon, Moises A.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 130 (1-3) : 97 - 102
  • [50] MICROWAVE-ASSISTED SYNTHESIS
    Gediz Erturk, Aliye
    Bekdemir, Yunus
    PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 2014, 189 (02) : 285 - 292