Microwave-assisted flow synthesis of multicore iron oxide nanoparticles

被引:8
|
作者
Panariello, L. [1 ]
Besenhard, M. O. [1 ]
Damilos, S. [1 ]
Sergides, A. [2 ,6 ]
Sebastian, V. [3 ,4 ,5 ,6 ]
Irusta, S. [3 ,4 ,5 ]
Tang, J. [1 ]
Thanh, Nguyen Thi Kim [2 ,7 ]
Gavriilidis, A. [1 ]
机构
[1] UCL, Dept Chem Engn, Torrington Pl, London WC1E 7JE, England
[2] UCL, Dept Phys & Astron, Biophys Grp, Gower St, London WC1E 6BT, England
[3] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, Zaragoza 50009, Spain
[4] Univ Zaragoza, Dept Chem Engn, Campus Rio Ebro Edificio 1 D,C-Poeta Mariano Esqui, Zaragoza 50018, Spain
[5] CIBERBBN, Networking Res Ctr Bioengn Biomat & Nanomed, Madrid 28029, Spain
[6] Univ Zaragoza, Lab Microscopias Avanzadas, Zaragoza 50018, Spain
[7] UCL Healthcare Biomagnet & Nanomat Labs, 21 Albemarle St, London W1S 4BS, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Magnetic nanomaterials; Flow chemistry; Microwave heating; CHEMISTRY; MAGNETITE; COPRECIPITATION; MICROREACTORS; NUCLEATION; IMPACT; GROWTH; MRI;
D O I
10.1016/j.cep.2022.109198
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Coprecipitation is by far the most common synthesis method for iron oxide nanoparticles (IONPs). However, reproducibility and scalability represent a major challenge. Therefore, innovative processes for scalable pro-duction of IONPs are highly sought after. Here, we explored the combination of microwave heating with a flow reactor producing IONPs through coprecipitation. The synthesis was initially studied in a well-characterised microwave-heated flow system, enabling the synthesis of multicore IONPs, with control over both the single core size and the multicore hydrodynamic diameter. The effect of residence time and microwave power was investigated, enabling the synthesis of multicore nanostructures with hydrodynamic diameter between -35 and 70 nm, with single core size of 3-5 nm. Compared to particles produced under conventional heating, similar single core sizes were observed, though with smaller hydrodynamic diameters. The process comprised of the initial IONP coprecipitation followed by the addition of the stabiliser (citric acid and dextran). The ability of precisely controlling the stabiliser addition time (distinctive of flow reactors), contributed to the synthesis reproducibility. Finally, scale-up by increasing the reactor length and using a different microwave cavity was demonstrated, producing particles of similar structure as those from the small scale system, with a throughput of 3.3 g/h.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Microwave-assisted hydrothermal nanoarchitectonics of polyethyleneimine-coated iron oxide nanoparticles
    Cecilia A. Albornoz
    Mariano A. Paulin
    Adrián A. Cristóbal
    Daniel R. Vega
    Ana G. Leyva
    Cinthia P. Ramos
    Applied Physics A, 2022, 128
  • [22] Microwave-assisted hydrothermal nanoarchitectonics of polyethyleneimine-coated iron oxide nanoparticles
    Albornoz, Cecilia A.
    Paulin, Mariano A.
    Cristobal, Adrian A.
    Vega, Daniel R.
    Leyva, Ana G.
    Ramos, Cinthia P.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (01):
  • [23] Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite
    Ling Hu
    Aurelien Percheron
    Denis Chaumont
    Claire-Helene Brachais
    Journal of Sol-Gel Science and Technology, 2011, 60 : 198 - 205
  • [24] Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite
    Hu, Ling
    Percheron, Aurelien
    Chaumont, Denis
    Brachais, Claire-Helene
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2011, 60 (02) : 198 - 205
  • [25] Microwave-assisted polyol synthesis of Cu nanoparticles
    Blosi, M.
    Albonetti, S.
    Dondi, M.
    Martelli, C.
    Baldi, G.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (01) : 127 - 138
  • [26] Microwave-assisted polyol synthesis of Cu nanoparticles
    M. Blosi
    S. Albonetti
    M. Dondi
    C. Martelli
    G. Baldi
    Journal of Nanoparticle Research, 2011, 13 : 127 - 138
  • [27] Preparation of CdS nanoparticles by microwave-assisted synthesis
    Tamasauskaite-Tamasiunaite, L.
    Grinciene, G.
    Simkunaite-Stanyniene, B.
    Naruskevicius, L.
    Pakstas, V.
    Selskis, A.
    Norkus, E.
    CHEMIJA, 2015, 26 (03): : 193 - 197
  • [28] MICROWAVE-ASSISTED SYNTHESIS AND CHARACTERIZATION OF CaS NANOPARTICLES
    Roy, Arup
    Bhattacharya, Jayanta
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2012, 11 (05)
  • [29] Microwave-Assisted Combustion Synthesis of ZnO Nanoparticles
    Kooti, M.
    Sedeh, A. Naghdi
    JOURNAL OF CHEMISTRY, 2013, 2013
  • [30] Microwave-assisted synthesis of zinc oxide nanostructures
    Ogurtsov K.N.
    Suzdal’tsev S.Y.
    Gdalev A.V.
    Nanotechnologies in Russia, 2015, 10 (9-10): : 727 - 731