SPECTRAL POINTS OF TYPE π+ AND TYPE π- OF CLOSED OPERATORS IN INDEFINITE INNER PRODUCT SPACES

被引:1
|
作者
Philipp, Friedrich [1 ]
Trunk, Carsten [2 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
来源
OPERATORS AND MATRICES | 2015年 / 9卷 / 03期
关键词
Indefinite inner product; selfadjoint operator; spectrum of positive and negative type; spectrum of type pi(+) and pi(-); local spectral function; perturbation theory; SELF-ADJOINT OPERATORS;
D O I
10.7153/oam-09-30
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of spectral points of type pi(+) and type pi(-) of closed operators A in a Hilbert space which is equipped with an indefinite inner product. It is shown that these points are stable under compact perturbations. In the second part of the paper we assume that A is symmetric with respect to the indefinite inner product and prove that the growth of the resolvent of A is of finite order in a neighborhood of a real spectral point of type pi(+) or pwhich is not in the interior of the spectrum of A. Finally, we prove that there exists a local spectral function on intervals of type pi(+) or pi(-)
引用
收藏
页码:481 / 506
页数:26
相关论文
共 50 条
  • [41] Product-type Operators Between Minimal Mobius Invariant Spaces and Zygmund Type Spaces
    Hassanlou, Mostafa
    Abbasi, Ebrahim
    Arpatapeh, Mehdi Kanani
    Nasresfahani, Sepideh
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 69 - 80
  • [42] The Product-Type Operators from Logarithmic Bloch Spaces to Zygmund-Type Spaces
    Liu, Yongmin
    Yu, Yanyan
    [J]. FILOMAT, 2019, 33 (12) : 3639 - 3653
  • [43] Numerical radius inequalities for indefinite inner product space operators
    Ren, Conghui
    Wu, Deyu
    [J]. ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [44] On generalized numerical ranges of operators on an indefinite inner product space
    Bebiano, N
    Lemos, R
    da Providência, J
    Soares, G
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4): : 203 - 233
  • [45] Numerical radius inequalities for indefinite inner product space operators
    Conghui Ren
    Deyu Wu
    [J]. Advances in Operator Theory, 2023, 8
  • [46] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 21 - 64
  • [47] Classification of linear mappings between indefinite inner product spaces
    Meleiro, Juan
    Sergeichuk, Vladimir V.
    Solovera, Thiago
    Zaidan, Andre
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 356 - 374
  • [48] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Lesley A. Ward
    Lixin Yan
    [J]. Journal of Fourier Analysis and Applications, 2017, 23 : 21 - 64
  • [49] POLAR DECOMPOSITIONS OF QUATERNION MATRICES IN INDEFINITE INNER PRODUCT SPACES
    Groenewald, Gilbert J.
    Van Rensburg, Dawie B. Janse
    Ran, Andre C. M.
    Theron, Frieda
    Van Straaten, Madelein
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 659 - 670
  • [50] New results for EP matrices in indefinite inner product spaces
    Radojevic, Ivana M.
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (01) : 91 - 103