Indefinite inner product;
selfadjoint operator;
spectrum of positive and negative type;
spectrum of type pi(+) and pi(-);
local spectral function;
perturbation theory;
SELF-ADJOINT OPERATORS;
D O I:
10.7153/oam-09-30
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We introduce the notion of spectral points of type pi(+) and type pi(-) of closed operators A in a Hilbert space which is equipped with an indefinite inner product. It is shown that these points are stable under compact perturbations. In the second part of the paper we assume that A is symmetric with respect to the indefinite inner product and prove that the growth of the resolvent of A is of finite order in a neighborhood of a real spectral point of type pi(+) or pwhich is not in the interior of the spectrum of A. Finally, we prove that there exists a local spectral function on intervals of type pi(+) or pi(-)
机构:
Univ Utah, Dept Phys & Astron, 115 South 1400 East 201, Salt Lake City, UT 84112 USAUniv Utah, Dept Phys & Astron, 115 South 1400 East 201, Salt Lake City, UT 84112 USA
机构:Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
Bebiano, N
Lemos, R
论文数: 0引用数: 0
h-index: 0
机构:Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
Lemos, R
da Providência, J
论文数: 0引用数: 0
h-index: 0
机构:Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
da Providência, J
Soares, G
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, PortugalUniv Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal