Deciphering the Routes of invasion of Drosophila suzukii by Means of ABC Random Forest

被引:124
|
作者
Fraimout, Antoine [1 ]
Debat, Vincent [1 ]
Fellous, Simon [2 ]
Hufbauer, Ruth A. [2 ,3 ]
Foucaud, Julien [2 ]
Pudlo, Pierre [4 ]
Marin, Jean-Michel [5 ]
Price, Donald K. [6 ]
Cattel, Julien [7 ]
Chen, Xiao [8 ]
Depra, Marindia [9 ]
Duyck, Pierre Francois [10 ]
Guedot, Christelle [11 ]
Kenis, Marc [12 ]
Kimura, Masahito T. [13 ]
Loeb, Gregory [14 ]
Loiseau, Anne [2 ]
Martinez-Sanudo, Isabel [15 ]
Pascual, Marta [16 ]
Richmond, Maxi Polihronakis [17 ]
Shearer, Peter [18 ]
Singh, Nadia [19 ]
Tamura, Koichiro [20 ]
Xuereb, Anne
Zhang, Jinping [21 ]
Estoup, Arnaud [2 ]
机构
[1] Sorbonne Univ, ISYEB UMR CNRS 7205, Inst Systemat Evolut Biodiversite, MNHN,UPMC,EPHE,Museum Natl Hist Nat, Paris, France
[2] INRA, Ctr Biol & Gest Populat, Montpellier SupAgro, UMR INRA,IRD,Cirad, Montferrier Sur Lez, France
[3] Colorado State Univ, Ft Collins, CO 80523 USA
[4] Aix Marseille Univ, Ctr Math & Informat, Marseille, France
[5] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, Montpellier, France
[6] Univ Hawaii Hilo, Trop Conservat Biol & Environm Sci, Hilo, HI USA
[7] Univ Claude Bernard Lyon 1, UMR CNRS 5558, Lab Biometrie & Biol Evolut, Villeurbanne, France
[8] Yunnan Agr Univ, Coll Plant Protect, Kunming, Yunnan Province, Peoples R China
[9] Univ Fed Rio Grande do Sul, Programa Pos Grad Biol Anim, Programa Pos Grad Genet & Biol Mol, Porto Alegre, RS, Brazil
[10] CIRAD, UMR Peuplement Vegetaux & Bioagresseurs Milieu T, Paris, France
[11] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA
[12] CABI, Delemont, Switzerland
[13] Hokkaido Daigaku Univ, Grad Sch Environm Earth Sci, Sapporo, Hokkaido, Japan
[14] Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA
[15] Univ Padua, Dipartimento Agron Anim Alimenti Risorse Nat & Am, Padua, Italy
[16] Univ Barcelona, Dept Genet, Barcelona, Spain
[17] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[18] Oregon State Univ, Mid Columbia Agr Res & Extens Ctr, Hood River, OR 97031 USA
[19] North Carolina State Univ, Dept Genet, Raleigh, NC USA
[20] Tokyo Metropolitan Univ, Dept Biol Sci, Tokyo, Japan
[21] Chinese Acad Agr Sci, MoA CABI Joint Lab Biosafety, Beixiaguan, Haidian Qu, Peoples R China
基金
美国国家科学基金会;
关键词
Drosophila suzukii; invasion routes; random forest; approximate Bayesian computation; population genetics; APPROXIMATE BAYESIAN COMPUTATION; SPOTTED-WING DROSOPHILA; GENETIC-VARIATION; POPULATION HISTORY; DIPTERA DROSOPHILIDAE; MICROSATELLITE DATA; DNA-SEQUENCE; EVOLUTION; ADMIXTURE; SOFTWARE;
D O I
10.1093/molbev/msx050
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios.
引用
收藏
页码:980 / 996
页数:17
相关论文
共 50 条
  • [41] A Brief Assessment of Drosophila suzukii (Diptera: Drosophilidae) Abundance in Forest and Non-Forested Habitats Across an Altitude Gradient on Mauna Loa, Hawai'i
    Curbelo, Keena
    Price, Donald K.
    Koch, Jonathan Berenguer Uhuad
    PACIFIC SCIENCE, 2021, 75 (04) : 513 - 524
  • [42] Mapping Homogeneous Response Areas for Forest Fuel Management Using Geospatial Data, K-Means, and Random Forest Classification
    Centro Universitario de la Costa Sur, Universidad de Guadalajara, Avenida Independencia Nacional 151, Jalisco, Autlán de Navarro
    48900, Mexico
    不详
    28801, Spain
    不详
    45110, Mexico
    Forests, 1600, 12
  • [43] Mapping Homogeneous Response Areas for Forest Fuel Management Using Geospatial Data, K-Means, and Random Forest Classification
    Agustin Chavez-Duran, Alvaro
    Olvera-Vargas, Miguel
    Figueroa-Rangel, Blanca
    Garcia, Mariano
    Aguado, Inmaculada
    Ariel Ruiz-Corral, Jose
    FORESTS, 2022, 13 (12):
  • [44] An improved K-means clustering and optimal random forest for scheduling workloads in virtual servers
    Amulu, Lourdes Mary
    Manjusha, M.
    Ashok, J.
    EVOLVING SYSTEMS, 2024, 15 (05) : 1801 - 1815
  • [45] Triple junction cell temperature evaluation in a CPV system by means of a Random-Forest model
    Renno, C.
    Petito, F.
    ENERGY CONVERSION AND MANAGEMENT, 2018, 169 : 124 - 136
  • [46] Deciphering optimal molecular determinants of non-hemolytic, cell-penetrating antimicrobial peptides through bioinformatics and Random Forest
    Kumar, Ashok
    Chadha, Sonia
    Sharma, Mradul
    Kumar, Mukesh
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [47] A Novel Initialization Approach for Fuzzy C-Means algorithm using Unsupervised Random Forest Method
    Tandel, Bhavikkumar
    Phophalia, Ashish
    2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 568 - 573
  • [48] Identification of Influential Weather Factors on Traffic Safety Using K-means Clustering and Random Forest
    Kwon, Oh Hoon
    Park, Shin Hyoung
    ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING: FUTURETECH & MUE, 2016, 393 : 593 - 599
  • [49] detection of response shift using a mixed approach combining: k-means and random forest methods
    Boucekine, Mohamed
    Baumstarck, Karine
    Michel, Pierre
    Boyer, Laurent
    Loundou, Anderson
    Ghattas, Badih
    Auquier, Pascal
    QUALITY OF LIFE RESEARCH, 2015, 24 : 135 - 136
  • [50] 基于K-means和Random Forest的WiFi室内定位方法
    李军
    何星
    蔡云泽
    徐琴
    控制工程, 2017, 24 (04) : 787 - 792