Deciphering the Routes of invasion of Drosophila suzukii by Means of ABC Random Forest

被引:124
|
作者
Fraimout, Antoine [1 ]
Debat, Vincent [1 ]
Fellous, Simon [2 ]
Hufbauer, Ruth A. [2 ,3 ]
Foucaud, Julien [2 ]
Pudlo, Pierre [4 ]
Marin, Jean-Michel [5 ]
Price, Donald K. [6 ]
Cattel, Julien [7 ]
Chen, Xiao [8 ]
Depra, Marindia [9 ]
Duyck, Pierre Francois [10 ]
Guedot, Christelle [11 ]
Kenis, Marc [12 ]
Kimura, Masahito T. [13 ]
Loeb, Gregory [14 ]
Loiseau, Anne [2 ]
Martinez-Sanudo, Isabel [15 ]
Pascual, Marta [16 ]
Richmond, Maxi Polihronakis [17 ]
Shearer, Peter [18 ]
Singh, Nadia [19 ]
Tamura, Koichiro [20 ]
Xuereb, Anne
Zhang, Jinping [21 ]
Estoup, Arnaud [2 ]
机构
[1] Sorbonne Univ, ISYEB UMR CNRS 7205, Inst Systemat Evolut Biodiversite, MNHN,UPMC,EPHE,Museum Natl Hist Nat, Paris, France
[2] INRA, Ctr Biol & Gest Populat, Montpellier SupAgro, UMR INRA,IRD,Cirad, Montferrier Sur Lez, France
[3] Colorado State Univ, Ft Collins, CO 80523 USA
[4] Aix Marseille Univ, Ctr Math & Informat, Marseille, France
[5] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, Montpellier, France
[6] Univ Hawaii Hilo, Trop Conservat Biol & Environm Sci, Hilo, HI USA
[7] Univ Claude Bernard Lyon 1, UMR CNRS 5558, Lab Biometrie & Biol Evolut, Villeurbanne, France
[8] Yunnan Agr Univ, Coll Plant Protect, Kunming, Yunnan Province, Peoples R China
[9] Univ Fed Rio Grande do Sul, Programa Pos Grad Biol Anim, Programa Pos Grad Genet & Biol Mol, Porto Alegre, RS, Brazil
[10] CIRAD, UMR Peuplement Vegetaux & Bioagresseurs Milieu T, Paris, France
[11] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA
[12] CABI, Delemont, Switzerland
[13] Hokkaido Daigaku Univ, Grad Sch Environm Earth Sci, Sapporo, Hokkaido, Japan
[14] Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA
[15] Univ Padua, Dipartimento Agron Anim Alimenti Risorse Nat & Am, Padua, Italy
[16] Univ Barcelona, Dept Genet, Barcelona, Spain
[17] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[18] Oregon State Univ, Mid Columbia Agr Res & Extens Ctr, Hood River, OR 97031 USA
[19] North Carolina State Univ, Dept Genet, Raleigh, NC USA
[20] Tokyo Metropolitan Univ, Dept Biol Sci, Tokyo, Japan
[21] Chinese Acad Agr Sci, MoA CABI Joint Lab Biosafety, Beixiaguan, Haidian Qu, Peoples R China
基金
美国国家科学基金会;
关键词
Drosophila suzukii; invasion routes; random forest; approximate Bayesian computation; population genetics; APPROXIMATE BAYESIAN COMPUTATION; SPOTTED-WING DROSOPHILA; GENETIC-VARIATION; POPULATION HISTORY; DIPTERA DROSOPHILIDAE; MICROSATELLITE DATA; DNA-SEQUENCE; EVOLUTION; ADMIXTURE; SOFTWARE;
D O I
10.1093/molbev/msx050
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios.
引用
收藏
页码:980 / 996
页数:17
相关论文
共 50 条
  • [31] First record of the invasive pest Drosophila suzukii in Ukraine indicates multiple sources of invasion (vol 90, pg 421, 2017)
    Lavrinienko, Anton
    Kesaniemi, Jenni
    Watts, Phillip C.
    Serga, Svitlana
    Pascual, Marta
    Mestres, Francesc
    Kozeretska, Iryna
    JOURNAL OF PEST SCIENCE, 2017, 90 (02) : 431 - 431
  • [32] K-Random Forests: a K-means style algorithm for Random Forest clustering
    Bicego, Manuele
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [33] A Whole-Genome Scan for Association with Invasion Success in the Fruit Fly Drosophila suzukii Using Contrasts of Allele Frequencies Corrected for Population Structure
    Olazcuaga, Laure
    Loiseau, Anne
    Parrinello, Hugues
    Paris, Mathilde
    Fraimout, Antoine
    Guedot, Christelle
    Diepenbrock, Lauren M.
    Kenis, Marc
    Zhang, Jinping
    Chen, Xiao
    Borowiec, Nicolas
    Facon, Benoit
    Vogt, Heidrun
    Price, Donald K.
    Vogel, Heiko
    Prud'homme, Benjamin
    Estoup, Arnaud
    Gautier, Mathieu
    MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (08) : 2369 - 2385
  • [34] Deciphering the function of unknown Leishmania donovani cytosolic proteins using hyperparameter-tuned random forest
    Pradeep Singh
    Awanish Kumar
    Network Modeling Analysis in Health Informatics and Bioinformatics, 2020, 9
  • [35] Deciphering the function of unknown Leishmania donovani cytosolic proteins using hyperparameter-tuned random forest
    Singh, Pradeep
    Kumar, Awanish
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2019, 9 (01):
  • [36] Hepatitis C Virus Detection Model by Using Random Forest, Logistic-Regression and ABC Algorithm
    Li, Tzuu-Hseng S.
    Chiu, Huan-Jung
    Kuo, Ping-Huan
    IEEE ACCESS, 2022, 10 : 91045 - 91058
  • [37] WORLDWIDE INVASION BY DROSOPHILA SUZUKII: DOES BEING THE "COUSIN" OF A MODEL ORGANISM REALLY HELP SETTING UP BIOLOGICAL CONTROL? HOPES, DISENCHANTMENTS AND NEW PERSPECTIVES
    Iacovone, A.
    Girod, P.
    Ris, N.
    Weydert, C.
    Gibert, P.
    Poirie, M.
    Gatti, J. -L.
    REVUE D ECOLOGIE-LA TERRE ET LA VIE, 2015, 70 : 207 - 214
  • [38] RFCRYS: Sequence-based protein crystallization propensity prediction by means of random forest
    Jahandideh, Samad
    Mahdavi, Abbas
    JOURNAL OF THEORETICAL BIOLOGY, 2012, 306 : 115 - 119
  • [39] Effective Diagnosis of Alzheimer's Disease by Means of Distance Metric Learning and Random Forest
    Chaves, R.
    Ramirez, J.
    Gorriz, J. M.
    Illan, I.
    Segovia, F.
    Olivares, A.
    NEW CHALLENGES ON BIOINSPIRED APPLICATIONS: 4TH INTERNATIONAL WORK-CONFERENCE ON THE INTERPLAY BETWEEN NATURAL AND ARTIFICIAL COMPUTATION, IWINAC 2011, PART II, 2011, 6687 : 59 - 67
  • [40] New set of microsatellite markers for the spotted-wing Drosophila suzukii (Diptera: Drosophilidae): A promising molecular tool for inferring the invasion history of this major insect pest
    Fraimout, Antoine
    Loiseau, Anne
    Price, Donald K.
    Xuereb, Anne
    Martin, Jean-Franois
    Vitalis, Renaud
    Felous, Simon
    Debat, Vincent
    Estoup, Arnaud
    EUROPEAN JOURNAL OF ENTOMOLOGY, 2015, 112 (04) : 855 - 859