Unsupervised learning for hierarchical clustering using statistical information

被引:0
|
作者
Okamoto, M [1 ]
Bu, N [1 ]
Tsuji, T [1 ]
机构
[1] Hiroshima Univ, Dept Artificial Complex Syst Engn, Higashihiroshima, Hiroshima 7398527, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel hierarchical clustering method that can classify given data without specified knowledge of the number of classes. In this method, at each node of a hierarchical classification tree, log-linearized Gaussian mixture networks [2] are utilized as classifiers to divide data into two subclasses based on statistical information, which are then classified into secondary subclasses and so on. Also, unnecessary structure of the tree can be avoided by training in a cross-validation manner. Validity of the proposed method is demonstrated with classification experiments on artificial data.
引用
收藏
页码:834 / 839
页数:6
相关论文
共 50 条
  • [31] Unsupervised Clustering of Microseismic Signals Using a Contrastive Learning Model
    Yang, Zhen
    Li, Huailiang
    Tuo, Xianguo
    Li, Linjia
    Wen, Junnan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [32] Automatic Malware Clustering using Word Embeddings and Unsupervised Learning
    Leonardo Duarte-Garcia, Hugo
    Cortez-Marquez, Alberto
    Sanchez-Perez, Gabriel
    Perez-Meana, Hector
    Toscano-Medina, Karina
    Hernandez-Suarez, Aldo
    [J]. 2019 7TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF), 2019,
  • [33] Model-Based Curve Clustering Using Unsupervised Learning
    Pesout, Pavel
    [J]. APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMY: AMSE 2009, 2009, : 361 - 369
  • [34] An Approach for Clustering of Seismic Events using Unsupervised Machine Learning
    Karmenova, Markhaba
    Tlebaldinova, Aizhan
    Krak, Iurii
    Denissova, Natalya
    Popova, Galina
    Zhantassova, Zheniskul
    Ponkina, Elena
    Gyorok, Gyorgy
    [J]. ACTA POLYTECHNICA HUNGARICA, 2022, 19 (05) : 7 - 22
  • [35] Unsupervised Cross-domain Learning by Interaction Information Co-clustering
    Ando, Shin
    Suzuki, Einoshin
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 13 - +
  • [36] Unsupervised statistical clustering of environmental shotgun sequences
    Andrey Kislyuk
    Srijak Bhatnagar
    Jonathan Dushoff
    Joshua S Weitz
    [J]. BMC Bioinformatics, 10
  • [37] Unsupervised statistical clustering of environmental shotgun sequences
    Kislyuk, Andrey
    Bhatnagar, Srijak
    Dushoff, Jonathan
    Weitz, Joshua S.
    [J]. BMC BIOINFORMATICS, 2009, 10 : 316
  • [38] A hierarchical deformable model using statistical and geometric information
    Shen, DG
    Davatzikos, C
    [J]. IEEE WORKSHOP ON MATHEMATICAL METHODS IN BIOMEDICAL IMAGE ANALYSIS, PROCEEDINGS, 2000, : 146 - 153
  • [39] Learning Multiple Behaviours using Hierarchical Clustering of Rewards
    Aimingol, Javier
    Montesano, Luis
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 4608 - 4613
  • [40] Active Learning with Clustering and Unsupervised Feature Learning
    Berardo, Saul
    Favero, Eloi
    Neto, Nelson
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE (AI 2015), 2015, 9091 : 281 - 290