Unsupervised learning for hierarchical clustering using statistical information

被引:0
|
作者
Okamoto, M [1 ]
Bu, N [1 ]
Tsuji, T [1 ]
机构
[1] Hiroshima Univ, Dept Artificial Complex Syst Engn, Higashihiroshima, Hiroshima 7398527, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel hierarchical clustering method that can classify given data without specified knowledge of the number of classes. In this method, at each node of a hierarchical classification tree, log-linearized Gaussian mixture networks [2] are utilized as classifiers to divide data into two subclasses based on statistical information, which are then classified into secondary subclasses and so on. Also, unnecessary structure of the tree can be avoided by training in a cross-validation manner. Validity of the proposed method is demonstrated with classification experiments on artificial data.
引用
收藏
页码:834 / 839
页数:6
相关论文
共 50 条
  • [21] Key Frame Extraction Using Unsupervised Clustering Based on a Statistical Model
    阳书平
    林行刚
    [J]. Tsinghua Science and Technology, 2005, (02) : 169 - 173
  • [22] Unsupervised hierarchical clustering via a genetic algorithm
    Greene, WA
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 998 - 1005
  • [23] Unsupervised learning aided by clustering and local-global hierarchical analysis in knowledge exploration
    Zhang, Yihao
    Orgun, Mehmet A.
    Lin, Weiqiang
    [J]. Journal of Digital Information Management, 2007, 5 (04): : 237 - 246
  • [24] Unsupervised multistage image classification using hierarchical clustering with a Bayesian similarity measure
    Lee, S
    Crawford, MM
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (03) : 312 - 320
  • [25] Optical clustering for unsupervised learning using coupled microring resonators
    McAulay, AD
    Tong, H
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIV, 2005, 5809 : 402 - 408
  • [26] Unsupervised Clustering of Microseismic Signals Using a Contrastive Learning Model
    Yang, Zhen
    Li, Huailiang
    Tuo, Xianguo
    Li, Linjia
    Wen, Junnan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] A New Unsupervised Learning for Clustering Using Geometric Associative Memories
    Cruz, Benjamin
    Barron, Ricardo
    Sossa, Humberto
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, PROCEEDINGS, 2009, 5856 : 239 - 246
  • [28] UNSUPERVISED CLUSTERING AND CENTROID ESTIMATION USING DYNAMIC COMPETITIVE LEARNING
    KIA, SJ
    COGHILL, GG
    [J]. BIOLOGICAL CYBERNETICS, 1992, 67 (05) : 433 - 443
  • [29] Highway Project Clustering Using Unsupervised Machine Learning Approach
    Alikhani, Hamed
    Jeong, H. David
    [J]. COMPUTING IN CIVIL ENGINEERING 2021, 2022, : 172 - 179
  • [30] Unsupervised learning of acoustic events using dynamic time warping and hierarchical K-means plus plus clustering
    Schmalenstroeer, Joerg
    Bartek, Markus
    Haeb-Umbach, Reinhold
    [J]. 12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 312 - 315