Torsion points on elliptic curves over function fields and a theorem of Igusa

被引:14
|
作者
Bandini, Andrea [2 ]
Longhi, Ignazio [1 ]
Vigni, Stefano [1 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Elliptic curves; Function fields; Galois representations; ABELIAN-VARIETIES;
D O I
10.1016/j.exmath.2008.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If F is a global function field of characteristic p > 3, we employ Tate's theory of analytic uniformization to give an alternative proof of a theorem of Igusa describing the image of the natural Galois representation on torsion points of non-isotrivial elliptic curves defined over F. Along the way, using basic properties of Faltings heights of elliptic curves, we offer a detailed proof of the function field analogue of a classical theorem of Shafarevich according to which there are only finitely many F-isomorphism classes of admissible elliptic curves defined over F with good reduction outside a fixed finite set of places of F. We end the paper with an application to torsion points rational over abelian extensions of F. (C) 2008 Elsevier GmbH. All rights reserved.
引用
收藏
页码:175 / 209
页数:35
相关论文
共 50 条
  • [41] A BOUNDEDNESS THEOREM FOR THE TORSION OF A CLASS OF ELLIPTIC-CURVES OVER ALGEBRAIC NUMBER-FIELDS
    PFEIFER, M
    ARCHIV DER MATHEMATIK, 1994, 62 (06) : 519 - 527
  • [42] RATIONAL 2N-TORSION POINTS ON ELLIPTIC CURVES DEFINED OVER QUADRATIC FIELDS
    KENKU, MA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 11 (SEP): : 93 - 98
  • [43] On the class numbers of the fields of the pn-torsion points of certain elliptic curves over Q
    Sairaiji, Fumio
    Yamauchi, Takuya
    JOURNAL OF NUMBER THEORY, 2015, 156 : 277 - 289
  • [44] p-torsion monodromy representations of elliptic curves over geometric function fields
    Bakker, Benjamin
    Tsimerman, Jacob
    ANNALS OF MATHEMATICS, 2016, 184 (03) : 709 - 744
  • [45] Integral points on elliptic curves over number fields
    Smart, NP
    Stephens, NM
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 122 : 9 - 16
  • [46] Ray class fields generated by torsion points of certain elliptic curves
    Koo, Ja Kyung
    Shin, Dong Hwa
    Yoon, Dong Sung
    RAMANUJAN JOURNAL, 2012, 28 (03): : 341 - 360
  • [47] Ray class fields generated by torsion points of certain elliptic curves
    Ja Kyung Koo
    Dong Hwa Shin
    Dong Sung Yoon
    The Ramanujan Journal, 2012, 28 : 341 - 360
  • [48] A ruled residue theorem for function fields of elliptic curves
    Becher, Karim Johannes
    Gupta, Parul
    Mishra, Sumit Chandra
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (03)
  • [49] Ranks of Elliptic Curves with Prescribed Torsion over Number Fields
    Bosman, Johan
    Bruin, Peter
    Dujella, Andrej
    Najman, Filip
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (11) : 2885 - 2923
  • [50] Torsion of rational elliptic curves over quadratic fields II
    Enrique González-Jiménez
    José M. Tornero
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 121 - 143