Torsion points on elliptic curves over function fields and a theorem of Igusa

被引:14
|
作者
Bandini, Andrea [2 ]
Longhi, Ignazio [1 ]
Vigni, Stefano [1 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Elliptic curves; Function fields; Galois representations; ABELIAN-VARIETIES;
D O I
10.1016/j.exmath.2008.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If F is a global function field of characteristic p > 3, we employ Tate's theory of analytic uniformization to give an alternative proof of a theorem of Igusa describing the image of the natural Galois representation on torsion points of non-isotrivial elliptic curves defined over F. Along the way, using basic properties of Faltings heights of elliptic curves, we offer a detailed proof of the function field analogue of a classical theorem of Shafarevich according to which there are only finitely many F-isomorphism classes of admissible elliptic curves defined over F with good reduction outside a fixed finite set of places of F. We end the paper with an application to torsion points rational over abelian extensions of F. (C) 2008 Elsevier GmbH. All rights reserved.
引用
收藏
页码:175 / 209
页数:35
相关论文
共 50 条
  • [31] ON FIELDS OF DEFINITION OF TORSION POINTS OF ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION
    Dieulefait, Luis
    Gonzalez-Jimenez, Enrique
    Jimenez Urroz, Jorge
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) : 1961 - 1969
  • [32] Torsion of rational elliptic curves over quadratic fields
    Enrique González-Jiménez
    José M. Tornero
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 923 - 934
  • [33] TORSION OF RATIONAL ELLIPTIC CURVES OVER CUBIC FIELDS
    Gonzalez-Jimenez, Enrique
    Najman, Filip
    Tornero, Jose M.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) : 1899 - 1917
  • [34] TORSION OF ELLIPTIC CURVES OVER CYCLIC CUBIC FIELDS
    Derickx, Maarten
    Najman, Filip
    MATHEMATICS OF COMPUTATION, 2019, 88 (319) : 2443 - 2459
  • [35] Torsion of rational elliptic curves over quadratic fields
    Gonzalez-Jimenez, Enrique
    Tornero, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 923 - 934
  • [36] On the torsion of elliptic curves over quartic number fields
    Jeon, Daeyeol
    Kim, Chang Heon
    Park, Euisung
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 1 - 12
  • [37] ON THE TORSION OF RATIONAL ELLIPTIC CURVES OVER QUARTIC FIELDS
    Gonzalez-Jimenez, Enrique
    Lozano-Robledo, Alvaro
    MATHEMATICS OF COMPUTATION, 2018, 87 (311) : 1457 - 1478
  • [38] On the torsion of elliptic curves over cubic number fields
    Jeon, D
    Kim, CH
    Schweizer, A
    ACTA ARITHMETICA, 2004, 113 (03) : 291 - 301
  • [39] ON THE TORSION OF RATIONAL ELLIPTIC CURVES OVER SEXTIC FIELDS
    Daniels, Harris B.
    Gonzalez-Jimenez, Enrique
    MATHEMATICS OF COMPUTATION, 2020, 89 (321) : 411 - 435
  • [40] Torsion groups of elliptic curves over quadratic fields
    Kamienny, Sheldon
    Najman, Filip
    ACTA ARITHMETICA, 2012, 152 (03) : 291 - 305