LWIR hyperspectral micro-imager for detection of trace explosive particles

被引:3
|
作者
Bingham, Adam L. [1 ]
Lucey, Paul G. [1 ]
Akagi, Jason T. [1 ]
Hinrichs, John L. [1 ]
Knobbe, Edward T. [1 ]
机构
[1] Spectrum Photon, Honolulu, HI 96822 USA
关键词
LWIR; Hyperspectral Imaging; Explosives; Microscope;
D O I
10.1117/12.2050824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Chemical micro-imaging is a powerful tool for the detection and identification of analytes of interest against a cluttered background (i.e. trace explosive particles left behind in a fingerprint). While a variety of groups have demonstrated the efficacy of Raman instruments for these applications, point by point or line by line acquisition of a targeted field of view (FOV) is a time consuming process if it is to be accomplished with useful spatial resolutions. Spectrum Photonics has developed and demonstrated a prototype system utilizing long wave infrared hyperspectral microscopy, which enables the simultaneous collection of LWIR reflectance spectra from 8-14 mu m in a 30 x 7 mm FOV with 30 mu m spatial resolution in 30 s. An overview of the uncooled Sagnac-based LWIR HSM system will be given, emphasizing the benefits of this approach. Laboratory Hyperspectral data collected from custom mixtures and fingerprint residues is shown, focusing on the ability of the LWIR chemical micro-imager to detect chemicals of interest out of a cluttered background.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Detection of chemical pollutants by Passive LWIR Hyperspectral Imaging
    Lavoie, Hugo
    Theriault, Jean-Marc
    Bouffard, Francois
    Puckrin, Eldon
    Dube, Denis
    [J]. IMAGING SPECTROMETRY XVII, 2012, 8515
  • [32] The advanced Moon micro-imager experiment (AMIE) on SMART-1: Scientific goals and expected results
    Pinet, P
    Cerroni, P
    Josset, JL
    Beauvivre, S
    Chevrel, S
    Muinonen, K
    Langevin, Y
    Barucci, MA
    De Sanctis, MC
    Shkuratov, Y
    Shevchenko, V
    Plancke, P
    Hofmann, BA
    Josset, M
    Ehrenfreund, P
    Sodnik, Z
    Koschny, D
    Almeida, M
    Foing, B
    [J]. PLANETARY AND SPACE SCIENCE, 2005, 53 (13) : 1309 - 1318
  • [33] Nanosensors for trace explosive detection
    Senesac, Larry
    Thundat, Thomas G.
    [J]. MATERIALS TODAY, 2008, 11 (03) : 28 - 36
  • [34] Active LWIR hyperspectral imaging and algorithms for rapid standoff trace chemical identification
    Breshike, Christopher J.
    Kendziora, Christopher A.
    Budack, Norman
    Yoon, Yohan
    Furstenberg, Robert
    Viet Nguyen
    McGill, R. Andrew
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXV, 2019, 10986
  • [35] Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection
    Hufziger, Kyle T.
    Bykov, Sergei V.
    Asher, Sanford A.
    [J]. APPLIED SPECTROSCOPY, 2017, 71 (02) : 173 - 185
  • [36] Detection of disturbed earth using hyperspectral LWIR imaging data
    Hubbard, Wendy
    Bishop, Gary
    Gagnon, Jean-Philippe
    Lagueux, Philippe
    Hannuna, Sion
    Campbell, Neill
    [J]. ELECTRO-OPTICAL REMOTE SENSING, PHOTONIC TECHNOLOGIES, AND APPLICATIONS IV, 2010, 7835
  • [37] Subspace-Based Target Detection in LWIR Hyperspectral Imaging
    Acito, N.
    Moscadelli, M.
    Diani, M.
    Corsini, G.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1047 - 1051
  • [38] DEVELOPMENT OF CANADIAN HYPERSPECTRAL IMAGER ONBOARD MICRO-SATELLITES
    Qian, Shen-En
    Girard, Ralph
    Kroupnik, Guennadi
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3506 - 3509
  • [39] DEVELOPMENT OF TRACE EXPLOSIVE DETECTION STANDARDS
    ELIAS, L
    [J]. JOURNAL OF TESTING AND EVALUATION, 1994, 22 (03) : 280 - 281
  • [40] Target Detection Using Artificial Neural Networks on LWIR Hyperspectral Imagery
    Martin, Jacob A.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644