Alternative c-means clustering algorithms

被引:457
|
作者
Wu, KL [1 ]
Yang, MS [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Math, Chungli 32023, Taiwan
关键词
hard c-means; fuzzy c-means; alternative c-means; fixed-point iterations; robustness; noise;
D O I
10.1016/S0031-3203(01)00197-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new metric to replace the Euclidean norm in c-means clustering procedures. On the basis of the robust statistic and the influence function, we claim that the proposed new metric is more robust than the Euclidean norm. We then create two new clustering methods called the alternative hard c-means (AHCM) and alternative fuzzy c-means (AFCM) clustering algorithms. These alternative types of c-means clustering have more robustness than c-means clustering, Numerical results show that AHCM has better performance than HCM and AFCM is better than FCM. We recommend AFCM for use in cluster analysis. Recently, this AFCM algorithm has successfully been used in segmenting the magnetic resonance image of Ophthalmology to differentiate the abnormal tissues from the normal tissues. (C), 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2267 / 2278
页数:12
相关论文
共 50 条
  • [41] An improved C-means clustering algorithm
    Pi, Dechang
    Xian, Chuhua
    Qin, Xiaolin
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2008, 23 (01): : 43 - 49
  • [42] DATA CLUSTERING BASED ON FUZZY C-MEANS AND CHAOTIC WHALE OPTIMIZATION ALGORITHMS
    Arslan, Hatice
    Toz, Metin
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1103 - 1124
  • [43] Applications of genetic algorithms, geostatistics, and fuzzy c-means clustering to image segmentation
    Pham, T
    Wagner, M
    Clark, D
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 741 - 746
  • [44] Acceleration and Scalability for c-Means Clustering
    Bezdek, James
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 31 - 32
  • [45] A modified C-means clustering algorithm
    El-Mouadib, Faraj A.
    Zubi, Zakaria Suliman
    Talhi, Halima S.
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON DATA NETWORKS, COMMUNICATIONS, COMPUTERS (DNCOCO '09), 2009, : 85 - +
  • [46] A mixed c-means clustering model
    Pal, NR
    Pal, K
    Bezdek, JC
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 11 - 21
  • [47] On Tolerant Fuzzy c-Means Clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 421 - 428
  • [48] Vague C-means clustering algorithm
    Xu, Chao
    Zhang, Peilin
    Li, Bing
    Wu, Dinghai
    Fan, Hongbo
    PATTERN RECOGNITION LETTERS, 2013, 34 (05) : 505 - 510
  • [49] c-means clustering on the multinomial manifold
    Inokuchi, Ryo
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4617 : 261 - +
  • [50] Generalized fuzzy c-means algorithms
    Karayiannis, NB
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2000, 8 (01) : 63 - 81