Alternative c-means clustering algorithms

被引:457
|
作者
Wu, KL [1 ]
Yang, MS [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Math, Chungli 32023, Taiwan
关键词
hard c-means; fuzzy c-means; alternative c-means; fixed-point iterations; robustness; noise;
D O I
10.1016/S0031-3203(01)00197-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new metric to replace the Euclidean norm in c-means clustering procedures. On the basis of the robust statistic and the influence function, we claim that the proposed new metric is more robust than the Euclidean norm. We then create two new clustering methods called the alternative hard c-means (AHCM) and alternative fuzzy c-means (AFCM) clustering algorithms. These alternative types of c-means clustering have more robustness than c-means clustering, Numerical results show that AHCM has better performance than HCM and AFCM is better than FCM. We recommend AFCM for use in cluster analysis. Recently, this AFCM algorithm has successfully been used in segmenting the magnetic resonance image of Ophthalmology to differentiate the abnormal tissues from the normal tissues. (C), 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2267 / 2278
页数:12
相关论文
共 50 条
  • [31] Kernel C-Means Clustering Algorithms for Hesitant Fuzzy Information in Decision Making
    Li, Chaoqun
    Zhao, Hua
    Xu, Zeshui
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (01) : 141 - 154
  • [32] Transfer Evidential C-Means Clustering
    Jiao, Lianmeng
    Wang, Feng
    Pan, Quan
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2021), 2021, 12915 : 47 - 55
  • [33] Optimizing kernel possibilistic fuzzy C-means clustering using metaheuristic algorithms
    Singh, Saumya
    Srivastava, Smriti
    EVOLVING SYSTEMS, 2024, 15 (04) : 1587 - 1606
  • [34] Novel Quadratic Fuzzy c-Means Algorithms for Effective Data Clustering Problems
    Kannan, S. R.
    Ramthilagam, S.
    Devi, R.
    Huang, Yueh-Min
    COMPUTER JOURNAL, 2013, 56 (03): : 393 - 406
  • [35] Association of IoT Devices Using Fuzzy C-Means Clustering and Apriori Algorithms
    Kim, Haesik
    2022 IEEE 19TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2022), 2022, : 27 - 32
  • [36] Optimization of Fuzzy C-means Clustering by Genetic Algorithms Based on Sizable Chromosome
    Wang, Jie-sheng
    Gao, Xian-wen
    PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 68 - +
  • [37] United C-means clustering models
    Wu, Xiaohong
    Li, Min
    He, Guangpu
    Journal of Computational Information Systems, 2008, 4 (04): : 1351 - 1356
  • [38] Mixed fuzzy C-means clustering
    Demirhan, Haydar
    Information Sciences, 2025, 690
  • [39] An Extension to Rough c-Means Clustering
    Li, Fan
    Liu, Qihe
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, 2011, 6954 : 208 - 216
  • [40] General c-means clustering model
    Yu, J
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (08) : 1197 - 1211