Alternative c-means clustering algorithms

被引:457
|
作者
Wu, KL [1 ]
Yang, MS [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Math, Chungli 32023, Taiwan
关键词
hard c-means; fuzzy c-means; alternative c-means; fixed-point iterations; robustness; noise;
D O I
10.1016/S0031-3203(01)00197-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new metric to replace the Euclidean norm in c-means clustering procedures. On the basis of the robust statistic and the influence function, we claim that the proposed new metric is more robust than the Euclidean norm. We then create two new clustering methods called the alternative hard c-means (AHCM) and alternative fuzzy c-means (AFCM) clustering algorithms. These alternative types of c-means clustering have more robustness than c-means clustering, Numerical results show that AHCM has better performance than HCM and AFCM is better than FCM. We recommend AFCM for use in cluster analysis. Recently, this AFCM algorithm has successfully been used in segmenting the magnetic resonance image of Ophthalmology to differentiate the abnormal tissues from the normal tissues. (C), 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2267 / 2278
页数:12
相关论文
共 50 条
  • [1] Convergence of alternative C-means clustering algorithms
    Urahama, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (04) : 752 - 754
  • [2] A comment on "Alternative c-means clustering algorithms"
    Zhang, DQ
    Chen, SC
    PATTERN RECOGNITION, 2004, 37 (02) : 173 - 174
  • [3] Intuitionistic fuzzy C-means clustering algorithms
    Zeshui Xu1
    2.Institute of Sciences
    3.Department of Information Systems
    Journal of Systems Engineering and Electronics, 2010, 21 (04) : 580 - 590
  • [4] RELATIONAL DUALS OF THE C-MEANS CLUSTERING ALGORITHMS
    HATHAWAY, RJ
    DAVENPORT, JW
    BEZDEK, JC
    PATTERN RECOGNITION, 1989, 22 (02) : 205 - 212
  • [5] Intuitionistic fuzzy C-means clustering algorithms
    Xu, Zeshui
    Wu, Junjie
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (04) : 580 - 590
  • [6] Improved possibilistic C-means clustering algorithms
    Zhang, JS
    Leung, YW
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (02) : 209 - 217
  • [7] Weighted possibilistic c-means clustering algorithms
    Schneider, A
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 176 - 180
  • [8] Locality sensitive C-means clustering algorithms
    Huang, Pengfei
    Zhang, Daoqiang
    NEUROCOMPUTING, 2010, 73 (16-18) : 2935 - 2943
  • [9] Weighted Intuitionistic Fuzzy C-Means Clustering Algorithms
    Kaushal, Meenakshi
    Lohani, Q. M. Danish
    Castillo, Oscar
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, 26 (03) : 943 - 977
  • [10] Gaussian-kernel c-means Clustering Algorithms
    Yang, Miin-Shen
    Chang-Chie, Shou-Jen
    Nataliani, Yessica
    THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2018), 2018, 11324 : 124 - 135