Sharp L2 log L inequalities for the Haar system and martingale transforms

被引:1
|
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
关键词
Haar system; Martingale; Square function; Best constants;
D O I
10.1016/j.spl.2014.07.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (h(n))(n >= 0) be the Haar system of functions on [0, 1]. The paper contains the proof of the estimate integral(1)(0) vertical bar Sigma(n)(k=0) epsilon(k)alpha(k)h(k)vertical bar(2) log vertical bar Sigma(n)(k=0) epsilon(k)alpha(k)h(k vertical bar) ds <= integral(1)(0) vertical bar Sigma(n)(k=0) alpha(k)h(k)vertical bar(2) log vertical bar e(2) Sigma(n)(k=0) alpha(k)h(k) vertical bar ds, for n = 0, 1, 2,.... Here (a(n))(n >= 0) is an arbitrary sequence with values in a given Hilbert space H and (epsilon(n))(n >= 0) is a sequence of signs. The constant e(2) appearing on the right is shown to be the best possible. This result is generalized to the sharp inequality E vertical bar g(n)vertical bar(2) log vertical bar g(n)vertical bar <= E vertical bar f(n)vertical bar(2) log(e(2)vertical bar fn vertical bar), n = 0, 1, 2,..., where (f(n))(n >= 0) is an arbitrary martingale with values in H and (g(n))(n >= 0) is its transform by a predictable sequence with values in (-1, 1). As an application, we obtain the two-sided bound for the martingale square function S(f): E vertical bar f(n)vertical bar(2) log(e(-2) vertical bar f(n)vertical bar) <= ESn2 (f) log S-n(f) E vertical bar f(n)vertical bar(2) log(e(2)vertical bar f(n)vertical bar), n = 0, 1, 2,.... (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 50 条
  • [41] Measures with Fourier Transforms in L2 of a Half-space
    Shayya, Bassam
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (01): : 172 - 179
  • [42] Logarithmic Sobolev inequalities of diffusions for the L2 metric
    Gourcy, Mathieu
    Wu, Liming
    POTENTIAL ANALYSIS, 2006, 25 (01) : 77 - 102
  • [43] Logarithmic Sobolev Inequalities of Diffusions for the L2 Metric
    Mathieu Gourcy
    Liming Wu
    Potential Analysis, 2007, 26 (3) : 303 - 305
  • [44] Vanishing Fourier Transforms and Generalized Differences in L2 (R)
    Nillsen, Rodney
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (02): : 393 - 404
  • [45] Weighted L2 inequalities for classical and semiclassical weights
    Jung, HS
    Kwon, KH
    Lee, DW
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 1997, 1 (02) : 171 - 181
  • [46] SHARP CONSTANTS IN WEIGHTED L2-MARKOV INEQUALITIES
    Totik, Vilmos
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (01) : 153 - 166
  • [47] The sharp affine L2 Sobolev trace inequality and variants
    De Napoli, P. L.
    Haddad, J.
    Jimenez, C. H.
    Montenegro, M.
    MATHEMATISCHE ANNALEN, 2018, 370 (1-2) : 287 - 308
  • [48] SHARP ESTIMATES INVOLVING A∞ AND L log L CONSTANTS, AND THEIR APPLICATIONS TO PDE
    Beznosova, O.
    Reznikov, A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2015, 26 (01) : 27 - 47
  • [50] L2 extension of holomorphic functions for log canonical pairs
    Kim, Dano
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 198 - 213