Sharp L2 log L inequalities for the Haar system and martingale transforms

被引:1
|
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
关键词
Haar system; Martingale; Square function; Best constants;
D O I
10.1016/j.spl.2014.07.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (h(n))(n >= 0) be the Haar system of functions on [0, 1]. The paper contains the proof of the estimate integral(1)(0) vertical bar Sigma(n)(k=0) epsilon(k)alpha(k)h(k)vertical bar(2) log vertical bar Sigma(n)(k=0) epsilon(k)alpha(k)h(k vertical bar) ds <= integral(1)(0) vertical bar Sigma(n)(k=0) alpha(k)h(k)vertical bar(2) log vertical bar e(2) Sigma(n)(k=0) alpha(k)h(k) vertical bar ds, for n = 0, 1, 2,.... Here (a(n))(n >= 0) is an arbitrary sequence with values in a given Hilbert space H and (epsilon(n))(n >= 0) is a sequence of signs. The constant e(2) appearing on the right is shown to be the best possible. This result is generalized to the sharp inequality E vertical bar g(n)vertical bar(2) log vertical bar g(n)vertical bar <= E vertical bar f(n)vertical bar(2) log(e(2)vertical bar fn vertical bar), n = 0, 1, 2,..., where (f(n))(n >= 0) is an arbitrary martingale with values in H and (g(n))(n >= 0) is its transform by a predictable sequence with values in (-1, 1). As an application, we obtain the two-sided bound for the martingale square function S(f): E vertical bar f(n)vertical bar(2) log(e(-2) vertical bar f(n)vertical bar) <= ESn2 (f) log S-n(f) E vertical bar f(n)vertical bar(2) log(e(2)vertical bar f(n)vertical bar), n = 0, 1, 2,.... (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 50 条
  • [31] L2 and L2-L∞ model reduction via linear matrix inequalities
    Univ of Houston, Houston, United States
    Int J Control, 3 (485-498):
  • [32] ON THE MIXED (l1, l2)-LITTLEWOOD INEQUALITIES AND INTERPOLATION
    Maia, Mariana
    Santos, Joedson
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 721 - 727
  • [33] ANOTHER SHARP L2 INEQUALITY OF OSTROWSKI TYPE
    Liu, Zheng
    ANZIAM JOURNAL, 2008, 50 (01): : 129 - 136
  • [34] Extremal functions for the sharp L2 -: Nash inequality
    Humbert, E
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (01) : 21 - 44
  • [35] A sharp upper bound for sampling numbers in L2
    Dolbeault, Matthieu
    Krieg, David
    Ulrich, Mario
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 63 : 113 - 134
  • [36] Sharp Jackson-Stechkin type inequalities for periodic functions in L2 and widths of function classes
    M. Sh. Shabozov
    S. B. Vakarchuk
    V. I. Zabutnaya
    Doklady Mathematics, 2013, 88 : 478 - 481
  • [37] Sharp inequalities of Jackson-Stechkin type for periodic functions in L2 differentiable in the Weyl sense
    Shabozov, M. Sh
    Shabozova, A. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 255 - 264
  • [38] Sharp Jackson-Stechkin type inequalities for periodic functions in L2 and widths of function classes
    Shabozov, M. Sh.
    Vakarchuk, S. B.
    Zabutnaya, V. I.
    DOKLADY MATHEMATICS, 2013, 88 (01) : 478 - 481
  • [39] A sharp bound on the expected number of upcrossings of an L2-bounded Martingale
    Gilat, David
    Meilijson, Isaac
    Sacerdote, Laura
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (06) : 1849 - 1856
  • [40] Conceptualising the actual L2 self into the L2 motivational self system
    Hu, Xiao
    Zhang, Yuying
    Hennebry-Leung, Mairin
    SYSTEM, 2025, 130