Methylartist: tools for visualizing modified bases from nanopore sequence data

被引:0
|
作者
Cheetham, Seth W. [1 ]
Kindlova, Michaela [2 ]
Ewing, Adam D. [1 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld, Australia
[2] Univ Queensland, Translat Res Inst, Mater Res Inst, Woolloongabba, Qld 4102, Australia
基金
英国医学研究理事会;
关键词
METHYLATION;
D O I
10.1093/bioinformaticsibtac292
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Methylartist is a consolidated suite of tools for processing, visualizing and analysing nanopore-derived modified base calls. All detectable methylation types (e.g. 5mCpG, 5hmC, 6mA) are supported, enabling integrated study of base pairs when modified naturally or as part of an experimental protocol.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] From data bases to knowledge bases in metallurgy: The information industry
    Zhmoidin, GI
    RUSSIAN METALLURGY, 1998, (01): : 63 - 72
  • [42] Tools for Visualizing Data-Model Misfit and Model Modifications in Structural Equation Modeling
    Meyer, Christitan T.
    Hancock, Gregory R.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2022, 57 (01) : 157 - 158
  • [43] PhenoDB, GeneMatcher and VariantMatcher, tools for analysis and sharing of sequence data
    Wohler, Elizabeth
    Martin, Renan
    Griffith, Sean
    Rodrigues, Eliete da S.
    Antonescu, Corina
    Posey, Jennifer E.
    Coban-Akdemir, Zeynep
    Jhangiani, Shalini N.
    Doheny, Kimberly F.
    Lupski, James R.
    Valle, David
    Hamosh, Ada
    Sobreira, Nara
    ORPHANET JOURNAL OF RARE DISEASES, 2021, 16 (01)
  • [44] PhenoDB, GeneMatcher and VariantMatcher, tools for analysis and sharing of sequence data
    Elizabeth Wohler
    Renan Martin
    Sean Griffith
    Eliete da S. Rodrigues
    Corina Antonescu
    Jennifer E. Posey
    Zeynep Coban-Akdemir
    Shalini N. Jhangiani
    Kimberly F. Doheny
    James R. Lupski
    David Valle
    Ada Hamosh
    Nara Sobreira
    Orphanet Journal of Rare Diseases, 16
  • [45] High-bandwidth nanopore data analysis by using a modified hidden Markov model
    Zhang, Jianhua
    Liu, Xiuling
    Ying, Yi-Lun
    Gu, Zhen
    Meng, Fu-Na
    Long, Yi-Tao
    NANOSCALE, 2017, 9 (10) : 3458 - 3465
  • [46] Visualizing Event Sequence Data for User Behavior Evaluation of In-Vehicle Information Systems
    Ebel, Patrick
    Lingenfelder, Christoph
    Vogelsang, Andreas
    AUTOMOTIVEUI '21: 13TH INTERNATIONAL ACM CONFERENCE ON AUTOMOTIVE USER INTERFACES AND INTERACTIVE VEHICULAR APPLICATIONS, 2021, : 219 - 229
  • [47] plotnineSeqSuite: a Python package for visualizing sequence data using ggplot2 style
    Tianze Cao
    Qian Li
    Yuexia Huang
    Anshui Li
    BMC Genomics, 24
  • [48] VarSifter: Visualizing and analyzing exome-scale sequence variation data on a desktop computer
    Teer, Jamie K.
    Green, Eric D.
    Mullikin, James C.
    Biesecker, Leslie G.
    BIOINFORMATICS, 2012, 28 (04) : 599 - 600
  • [49] RCSB Protein Data bank: Tools for visualizing and understanding biological macromolecules in 3D
    Burley, Stephen K.
    Bhikadiya, Charmi
    Bi, Chunxiao
    Bittrich, Sebastian
    Chao, Henry
    Chen, Li
    Craig, Paul A.
    Crichlow, Gregg, V
    Dalenberg, Kenneth
    Duarte, Jose M.
    Dutta, Shuchismita
    Fayazi, Maryam
    Feng, Zukang
    Flatt, Justin W.
    Ganesan, Sai
    Ghosh, Sutapa
    Goodsell, David S.
    Green, Rachel Kramer
    Guranovic, Vladimir
    Henry, Jeremy
    Hudson, Brian P.
    Lawson, Catherine L.
    Liang, Yuhe
    Lowe, Robert
    Peisach, Ezra
    Persikova, Irina
    Piehl, Dennis W.
    Rose, Yana
    Sali, Andrej
    Segura, Joan
    Sekharan, Monica
    Shao, Chenghua
    Vallat, Brinda
    Voigt, Maria
    Webb, Ben
    Westbrook, John D.
    Whetstone, Shamara
    Young, Jasmine Y.
    Zalevsky, Arthur
    Zardecki, Christine
    PROTEIN SCIENCE, 2022, 31 (12) : e4482
  • [50] Visualizing the Big (and Large) Data from an HPC Resource
    Sisneros, Robert
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2014, 2015, 498 : 240 - 249