PhenoDB, GeneMatcher and VariantMatcher, tools for analysis and sharing of sequence data

被引:16
|
作者
Wohler, Elizabeth [1 ]
Martin, Renan [1 ]
Griffith, Sean [2 ]
Rodrigues, Eliete da S. [1 ]
Antonescu, Corina [1 ]
Posey, Jennifer E. [3 ]
Coban-Akdemir, Zeynep [3 ]
Jhangiani, Shalini N. [3 ,4 ]
Doheny, Kimberly F. [1 ,2 ]
Lupski, James R. [3 ,4 ,5 ,6 ]
Valle, David [1 ]
Hamosh, Ada [1 ]
Sobreira, Nara [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Genet Med, Baltimore, MD 21231 USA
[2] Johns Hopkins Sch Med, Ctr Inherited Dis Res CIDR, Baltimore, MD USA
[3] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[4] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
[5] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[6] Texas Childrens Hosp, Houston, TX 77030 USA
关键词
PhenoDB; GeneMatcher; VariantMatcher; Data sharing; Genomic data; WEB-BASED TOOL; GENE;
D O I
10.1186/s13023-021-01916-z
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background With the advent of whole exome (ES) and genome sequencing (GS) as tools for disease gene discovery, rare variant filtering, prioritization and data sharing have become essential components of the search for disease genes and variants potentially contributing to disease phenotypes. The computational storage, data manipulation, and bioinformatic interpretation of thousands to millions of variants identified in ES and GS, respectively, is a challenging task. To aid in that endeavor, we constructed PhenoDB, GeneMatcher and VariantMatcher. Results PhenoDB is an accessible, freely available, web-based platform that allows users to store, share, analyze and interpret their patients' phenotypes and variants from ES/GS data. GeneMatcher is accessible to all stakeholders as a web-based tool developed to connect individuals (researchers, clinicians, health care providers and patients) around the globe with interest in the same gene(s), variant(s) or phenotype(s). Finally, VariantMatcher was developed to enable public sharing of variant-level data and phenotypic information from individuals sequenced as part of multiple disease gene discovery projects. Here we provide updates on PhenoDB and GeneMatcher applications and implementation and introduce VariantMatcher. Conclusion Each of these tools has facilitated worldwide data sharing and data analysis and improved our ability to connect genes to phenotypic traits. Further development of these platforms will expand variant analysis, interpretation, novel disease-gene discovery and facilitate functional annotation of the human genome for clinical genomics implementation and the precision medicine initiative.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PhenoDB, GeneMatcher and VariantMatcher, tools for analysis and sharing of sequence data
    Elizabeth Wohler
    Renan Martin
    Sean Griffith
    Eliete da S. Rodrigues
    Corina Antonescu
    Jennifer E. Posey
    Zeynep Coban-Akdemir
    Shalini N. Jhangiani
    Kimberly F. Doheny
    James R. Lupski
    David Valle
    Ada Hamosh
    Nara Sobreira
    Orphanet Journal of Rare Diseases, 16
  • [2] PhenoDB and genematcher, solving unsolved whole exome sequencing data
    Sobreira, N. L.
    Schiettecatte, F.
    Ling, H.
    Pugh, E.
    Witmer, D.
    Hetrick, K.
    Zhang, P.
    Doheny, K.
    Valle, D.
    Hamosh, A.
    HUMAN GENOMICS, 2016, 10
  • [3] The impact of GeneMatcher on international data sharing and collaboration
    Hamosh, Ada
    Wohler, Elizabeth
    Martin, Renan
    Griffith, Sean
    Rodrigues, Eliete da S.
    Antonescu, Corina
    Doheny, Kimberly F.
    Valle, David
    Sobreira, Nara
    HUMAN MUTATION, 2022, 43 (06) : 668 - 673
  • [4] New Tools for Mendelian Disease Gene Identification: PhenoDB Variant Analysis Module; and GeneMatcher, a Web-Based Tool for Linking Investigators with an Interest in the Same Gene
    Sobreira, Nara
    Schiettecatte, Francois
    Boehm, Corinne
    Valle, David
    Hamosh, Ada
    HUMAN MUTATION, 2015, 36 (04) : 425 - 431
  • [5] Our Genematcher data sharing experience: 10 days on average to confirm the pathogenicity of a candidate gene
    Bruel, A.
    Vittobello, A.
    Them, F. Tran Mau
    Nambot, S.
    Quere, V.
    Kuentz, P.
    Thevenon, J.
    Assoum, M.
    Moutton, S.
    Houcinat, N.
    Jean-Marcais, N.
    Lefebvre, M.
    Mosca-Boidron, A.
    Callier, P.
    Philippe, C.
    Faivre, L.
    Thauvin-Robinet, C.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 504 - 504
  • [6] Axiope tools for data management and data sharing
    Goddard, NH
    Cannon, RC
    Howell, FW
    NEUROINFORMATICS, 2003, 1 (03) : 271 - 284
  • [7] Axiope tools for data management and data sharing
    Nigel H. Goddard
    Robert C. Cannon
    Fred W. Howell
    Neuroinformatics, 2003, 1 : 271 - 284
  • [8] 2.5 years' experience of GeneMatcher data-sharing: a powerful tool for identifying new genes responsible for rare diseases
    Bruel, Ange-Line
    Vitobello, Antonio
    Mau-Them, Frederic Tran
    Nambot, Sophie
    Duffourd, Yannis
    Quere, Virginie
    Kuentz, Paul
    Garret, Philippine
    Thevenon, Julien
    Moutton, Sebastien
    Lehalle, Daphne
    Jean-Marcais, Nolwenn
    Garde, Aurore
    Delanne, Julian
    Lefebvre, Mathilde
    Lecoquierre, Francois
    Trost, Detlef
    Cho, Megan
    Begtrup, Amber
    Telegrafi, Aida
    Vabres, Pierre
    Mosca-Boidron, Anne-Laure
    Callier, Patrick
    Philippe, Christophe
    Faivre, Laurence
    Thauvin-Robinet, Christel
    GENETICS IN MEDICINE, 2019, 21 (07) : 1657 - 1661
  • [9] Generating community-built tools for data sharing and analysis in environmental networks
    Read, Jordan S.
    Gries, Corinna
    Read, Emily K.
    Klug, Jennifer
    Hanson, Paul
    Hipsey, Matthew R.
    Jennings, Eleanor
    O'Reilly, Catherine M.
    Winslow, Luke A.
    Pierson, Don
    McBride, Christopher
    Hamilton, David
    INLAND WATERS, 2016, 6 (04) : 637 - 644
  • [10] Bioinformatics tools and databases for analysis of next-generation sequence data
    Lee, Hong C.
    Lai, Kaitao
    Lorenc, Michal Tadeusz
    Imelfort, Michael
    Duran, Chris
    Edwards, David
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2012, 11 (01) : 12 - 24