Identification of plant leaf diseases using a nine-layer deep convolutional neural network

被引:333
|
作者
Geetharamani, G. [1 ]
Pandian, Arun J. [2 ]
机构
[1] Anna Univ, Univ Coll Engn, Dept Math, BIT Campus, Tiruchirappalli, Tamil Nadu, India
[2] MAM Coll Engn & Technol, Dept Comp Sci & Engn, Tiruchirappalli, Tamil Nadu, India
关键词
Artificial intelligence; Deep convolutional neural networks; Deep learning; Dropout; Image augmentation; Leaf diseases identification; Machine learning; Mini batch; Training epoch; Transfer learning;
D O I
10.1016/j.compeleceng.2019.04.011
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we proposed a novel plant leaf disease identification model based on a deep convolutional neural network (Deep CNN). The Deep CNN model is trained using an open dataset with 39 different classes of plant leaves and background images. Six types of data augmentation methods were used: image flipping, gamma correction, noise injection, principal component analysis (PCA) colour augmentation, rotation, and scaling. We observed that using data augmentation can increase the performance of the model. The proposed model was trained using different training epochs, batch sizes and dropouts. Compared with popular transfer learning approaches, the proposed model achieves better performance when using the validation data. After an extensive simulation, the proposed model achieves 96.46% classification accuracy. This accuracy of the proposed work is greater than the accuracy of traditional machine learning approaches. The proposed model is also tested with respect to its consistency and reliability. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 338
页数:16
相关论文
共 50 条
  • [21] Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network
    Hang, Jie
    Zhang, Dexiang
    Chen, Peng
    Zhang, Jun
    Wang, Bing
    SENSORS, 2019, 19 (19)
  • [22] Identification of plant diseases using convolutional neural networks
    Jadhav S.B.
    Udupi V.R.
    Patil S.B.
    International Journal of Information Technology, 2021, 13 (6) : 2461 - 2470
  • [23] Deep convolutional neural network for face skin diseases identification
    El Saleh, Rola
    Bakhshi, Sambit
    Nait-Ali, Amine
    2019 FIFTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2019, : 112 - 115
  • [24] IDENTIFICATION OF APPLE LEAF DISEASES BASED ON IMPROVED CONVOLUTIONAL NEURAL NETWORK
    LI, Lili
    Wang, Bin
    Hu, Zhiwei
    INMATEH-AGRICULTURAL ENGINEERING, 2022, 67 (02): : 553 - 561
  • [25] Tomato plant leaf disease detection using generative adversarial network and deep convolutional neural network
    Deshpande, Rashmi
    Patidar, Hemant
    IMAGING SCIENCE JOURNAL, 2022, 70 (01): : 1 - 9
  • [26] Statistical analysis and comparison of deep convolutional neural network models for the identification and classification of maize leaf diseases
    Dash, Arabinda
    Sethy, Prabira Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71189 - 71202
  • [27] A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases
    Dhaka, Vijaypal Singh
    Meena, Sangeeta Vaibhav
    Rani, Geeta
    Sinwar, Deepak
    Kavita
    Ijaz, Muhammad Fazal
    Wozniak, Marcin
    SENSORS, 2021, 21 (14)
  • [28] Identification of plant microRNAs using convolutional neural network
    Zhang, Yun
    Huang, Jianghua
    Xie, Feixiang
    Huang, Qian
    Jiao, Hongguan
    Cheng, Wenbo
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [29] Identification of maize leaf diseases by using the SKPSNet-50 convolutional neural network model
    Zeng, Weihui
    Li, Haidong
    Hu, Gensheng
    Liang, Dong
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2022, 35
  • [30] Skin Identification Using Deep Convolutional Neural Network
    Oghaz, Mahdi Maktab Dar
    Argyriou, Vasileios
    Monekosso, Dorothy
    Remagnino, Paolo
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 181 - 193