Identification of plant microRNAs using convolutional neural network

被引:0
|
作者
Zhang, Yun [1 ]
Huang, Jianghua [1 ]
Xie, Feixiang [1 ]
Huang, Qian [1 ]
Jiao, Hongguan [1 ]
Cheng, Wenbo [1 ]
机构
[1] Guizhou Univ Tradit Chinese Med, Coll Informat Engn, Guiyang, Guizhou, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
deep learning; plant; microRNA; !text type='Java']Java[!/text; SRICATs; ANNOTATION; TOOL; CRITERIA;
D O I
10.3389/fpls.2024.1330854
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MicroRNAs (miRNAs) are of significance in tuning and buffering gene expression. Despite abundant analysis tools that have been developed in the last two decades, plant miRNA identification from next-generation sequencing (NGS) data remains challenging. Here, we show that we can train a convolutional neural network to accurately identify plant miRNAs from NGS data. Based on our methods, we also present a user-friendly pure Java-based software package called Small RNA-related Intelligent and Convenient Analysis Tools (SRICATs). SRICATs encompasses all the necessary steps for plant miRNA analysis. Our results indicate that SRICATs outperforms currently popular software tools on the test data from five plant species. For non-commercial users, SRICATs is freely available at https://sourceforge.net/projects/sricats.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Plant Disease Identification Using Shallow Convolutional Neural Network
    Hassan, S. K. Mahmudul
    Jasinski, Michal
    Leonowicz, Zbigniew
    Jasinska, Elzbieta
    Maji, Arnab Kumar
    AGRONOMY-BASEL, 2021, 11 (12):
  • [2] Plant Disease Identification Using a Novel Convolutional Neural Network
    Hassan, Sk Mahmudul
    Maji, Arnab Kumar
    IEEE ACCESS, 2022, 10 : 5390 - 5401
  • [3] Plant Disease Identification and Classification Using Convolutional Neural Network and SVM
    Kibriya, Hareem
    Abdullah, Iram
    Nasrullah, Amber
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 264 - 268
  • [4] Lightweight Isotropic Convolutional Neural Network for Plant Disease Identification
    Feng, Wenfeng
    Song, Qiushuang
    Sun, Guoying
    Zhang, Xin
    AGRONOMY-BASEL, 2023, 13 (07):
  • [5] Plant Leaf Diseases Identification using Convolutional Neural Network with Treatment Handling System
    Leong, Koay K.
    Tze, Lim L.
    2020 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS 2020), 2020, : 39 - 44
  • [6] Identification of plant diseases using convolutional neural networks
    Jadhav S.B.
    Udupi V.R.
    Patil S.B.
    International Journal of Information Technology, 2021, 13 (6) : 2461 - 2470
  • [7] Plant Leaf Classification Using Convolutional Neural Network
    Othman, Nor Azlan
    Damanhuri, Nor Salwa
    Ali, Nabilah Md
    Meng, Belinda Chong Chiew
    Abd Samat, Ahmad Asri
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1043 - 1048
  • [8] Plant disease prediction using convolutional neural network
    Hema, M. S.
    Sharma, Niteesha
    Sowjanya, Y.
    Santoshini, Ch
    Durga, R. Sri
    Akhila, V
    EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2021, 9 (02) : 283 - 293
  • [9] Plant Leaf Classification Using Convolutional Neural Network
    Nidhi
    Yadav, Jay K.P.S.
    Recent Advances in Computer Science and Communications, 2022, 15 (03): : 421 - 431
  • [10] Vortex Boundary Identification using Convolutional Neural Network
    Berenjkoub, Marzieh
    Chen, Guoning
    Gunther, Tobias
    2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, : 261 - 265