Climate Comparisons and Change Projections for the Northwest Atlantic from Six CMIP5 Models

被引:28
|
作者
Loder, John W. [1 ]
van der Baaren, Augustine [1 ]
Yashayaev, Igor [1 ]
机构
[1] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada
关键词
climate change projections; Northwest Atlantic; Earth System Models; air temperature; ocean temperature; salinity; sea ice; mixed-layer depth; WESTERN BOUNDARY CURRENT; SEA-ICE VARIABILITY; EXTREMES INDEXES; OCEAN SALINITIES; DEEP CONVECTION; LABRADOR SEA; PART I; TEMPERATURE; CIRCULATION; SCENARIOS;
D O I
10.1080/07055900.2015.1087836
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Key physical variables for the Northwest Atlantic (NWA) are examined in the "historical" and two future Representative Concentration Pathway (RCP) simulations of six Earth System Models (ESMs) available through Phase 5 of the Climate Model Intercomparison Project (CMIP5). The variables are air temperature, sea-ice concentration, surface and subsurface ocean temperature and salinity, and ocean mixed-layer depth. Comparison of the historical simulations with observations indicates that the models provide a good qualitative and approximate quantitative representation of many of the large-scale climatological features in the NWA (e.g., annual cycles and spatial patterns). However, the models represent the detailed structure of some important NWA ocean and ice features poorly, such that caution is needed in the use of their projected future changes. Monthly "climate change" fields between the bidecades 1986-2005 and 2046-2065 are described, using ensemble statistics of the changes across the six ESMs. The results point to warmer air temperatures everywhere, warmer surface ocean temperatures in most areas, reduced sea-ice extent and, in most areas, reduced surface salinities and mixed-layer depths. However, the magnitudes of the inter-model differences in the projected changes are comparable to those of the ensemble-mean changes in many cases, such that robust quantitative projections are generally not possible for the NWA.
引用
收藏
页码:529 / 555
页数:27
相关论文
共 50 条
  • [21] Probabilistic Projections of Precipitation Change Over China Based on CMIP5 Models
    Shen, Yuchen
    Jiang, Xiaofei
    Hang, Yuehe
    2014 INTERNATIONAL CONFERENCE ON GIS AND RESOURCE MANAGEMENT (ICGRM), 2014, : 445 - 452
  • [22] Climate change projections over China using regional climate models forced by two CMIP5 global models. Part II: projections of future climate
    Hui, Pinhong
    Tang, Jianping
    Wang, Shuyu
    Niu, Xiaorui
    Zong, Peishu
    Dong, Xinning
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 : E78 - E94
  • [23] The Atlantic ITCZ bias in CMIP5 models
    Angela Cheska Siongco
    Cathy Hohenegger
    Bjorn Stevens
    Climate Dynamics, 2015, 45 : 1169 - 1180
  • [24] Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models
    Gabriele Villarini
    Gabriel A. Vecchi
    Nature Climate Change, 2012, 2 (8) : 604 - 607
  • [25] Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models
    Villarini, Gabriele
    Vecchi, Gabriel A.
    NATURE CLIMATE CHANGE, 2012, 2 (08) : 604 - 607
  • [26] The Atlantic ITCZ bias in CMIP5 models
    Siongco, Angela Cheska
    Hohenegger, Cathy
    Stevens, Bjorn
    CLIMATE DYNAMICS, 2015, 45 (5-6) : 1169 - 1180
  • [27] Climate change projections of boreal summer precipitation over tropical America by using statistical downscaling from CMIP5 models
    Palomino-Lemus, Reiner
    Cordoba-Machado, Samir
    Raquel Gamiz-Fortis, Sonia
    Castro-Diez, Yolanda
    Jesus Esteban-Parra, Maria
    ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (12):
  • [28] Simulation by CMIP5 Models of the Atlantic Multidecadal Oscillation and Its Climate Impacts
    Zhe HAN
    Feifei LUO
    Shuanglin LI
    Yongqi GAO
    Tore FUREVIK
    Lea SVENDSEN
    AdvancesinAtmosphericSciences, 2016, 33 (12) : 1329 - 1342
  • [29] Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models
    Qi Shu
    Qiang Wang
    Jie Su
    Xiang Li
    Fangli Qiao
    Climate Dynamics, 2019, 53 : 5279 - 5291
  • [30] Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
    J.-L. Dufresne
    M.-A. Foujols
    S. Denvil
    A. Caubel
    O. Marti
    O. Aumont
    Y. Balkanski
    S. Bekki
    H. Bellenger
    R. Benshila
    S. Bony
    L. Bopp
    P. Braconnot
    P. Brockmann
    P. Cadule
    F. Cheruy
    F. Codron
    A. Cozic
    D. Cugnet
    N. de Noblet
    J.-P. Duvel
    C. Ethé
    L. Fairhead
    T. Fichefet
    S. Flavoni
    P. Friedlingstein
    J.-Y. Grandpeix
    L. Guez
    E. Guilyardi
    D. Hauglustaine
    F. Hourdin
    A. Idelkadi
    J. Ghattas
    S. Joussaume
    M. Kageyama
    G. Krinner
    S. Labetoulle
    A. Lahellec
    M.-P. Lefebvre
    F. Lefevre
    C. Levy
    Z. X. Li
    J. Lloyd
    F. Lott
    G. Madec
    M. Mancip
    M. Marchand
    S. Masson
    Y. Meurdesoif
    J. Mignot
    Climate Dynamics, 2013, 40 : 2123 - 2165