Photo-energy conversion efficiency of CH3NH3PbI3/C60 heterojunction perovskite solar cells from first-principles

被引:2
|
作者
Chew, Khian-Hooi [1 ]
Kuwahara, Riichi [2 ]
Ohno, Kaoru [3 ]
机构
[1] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia
[2] Dassault Syst, Shinagawa Ku, ThinkPk Tower,2-1-1 Osaki, Tokyo 1416020, Japan
[3] Yokohama Natl Univ, Dept Phys, Hogogaya Ku, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
来源
MATERIALS ADVANCES | 2021年 / 2卷 / 05期
关键词
HALIDE PEROVSKITES; SPIRO-OMETAD; FILMS; DEGRADATION; TEMPERATURE; HYSTERESIS; FULLERENES; C-60;
D O I
10.1039/d0ma00853b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Halide perovskites have emerged as the most potential candidate for the next-generation solar cells. In this work, we conduct a comprehensive first-principles study on the photo-energy conversion efficiency (PCE) of the CH3NH3PbI3/C-60 heterojunction. Since perovskite solar cells (PSCs) are generally exposed to substantial temperature variations that affect the photo-physics and charge separation in the perovskites, finite slabs of both the tetragonal- and cubic-phases of CH3NH3PbI3 (MAPbI(3)) are constructed with different orientations of the methylammonium (MA) cation with respect to the perovskite surface. A C-60 molecule, acting as an electron acceptor and transport material, is introduced at various positions on the MAPbI(3) surface. Using the detailed balance approach, the PCE of the heterojunction is determined by examining the Kohn-Sham energies and orbitals located either in MAPbI(3) or in C-60. Our study reveals that the stability, the exciton dissociation efficiency, and the PCE of the tetragonal MAPbI(3)/C-60 heterojunctions strongly depend on the MA orientation and the C-60 position on the MAPbI(3) surface. This is attributed to the polar behavior of MAPbI(3). Using the tetragonal-phase heterojunction, a high PCE of eta similar to 19% can be achieved, if certain surface conditions are met. Built-in electric field originating from the surface dipoles of the MA cation facilitates the dissociation of electron-hole pairs and the electron transfer to fullerene. On the other hand, the heterojunction with a high-temperature cubic MAPbI(3) structure exhibits a PCE of eta similar to 10%, regardless of the MA orientation and C-60 on the MAPbI(3) surface.
引用
收藏
页码:1665 / 1675
页数:11
相关论文
共 50 条
  • [41] Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells
    Etgar, Lioz
    Gao, Peng
    Xue, Zhaosheng
    Peng, Qin
    Chandiran, Aravind Kumar
    Liu, Bin
    Nazeeruddin, Md. K.
    Graetzel, Michael
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (42) : 17396 - 17399
  • [42] Electronic Properties of the Graphdiyne/CH3NH3PbI3 Interface: A First-Principles Study
    Guo, Yao
    Xue, Yuanbin
    Li, Chengbo
    Li, Xianchang
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (01):
  • [43] Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells
    Hu, Hao
    Wang, Dong
    Zhou, Yuanyuan
    Zhang, Jiliang
    Lv, Siliu
    Pang, Shuping
    Chen, Xiao
    Liu, Zhihong
    Padture, Nitin P.
    Cui, Guanglei
    RSC ADVANCES, 2014, 4 (55) : 28964 - 28967
  • [44] Photoinduced ion-redistribution in CH3NH3PbI3 perovskite solar cells
    Yanagida, Masatoshi
    Shirai, Yasuhiro
    Khadka, Dhruba B.
    Miyano, Kenjiro
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (43) : 25118 - 25125
  • [45] Fabrication and Characterization of CH3NH3PbI3 Perovskite Solar Cells Added with Polysilanes
    Oku, Takeo
    Nomura, Junya
    Suzuki, Atsushi
    Tanaka, Hiroki
    Fukunishi, Sakiko
    Minami, Satoshi
    Tsukada, Shinichiro
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2018, 2018
  • [46] Defect Dynamics in Proton Irradiated CH3NH3PbI3 Perovskite Solar Cells
    Brus, Viktor V.
    Lang, Felix
    Bundesmann, Juergen
    Seidel, Sophie
    Denker, Andrea
    Rech, Bernd
    Landi, Giovanni
    Neitzert, Heinz C.
    Rappich, Joerg
    Nickel, Norbert H.
    ADVANCED ELECTRONIC MATERIALS, 2017, 3 (02):
  • [47] Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells
    Fernandes, Silvia Leticia
    Bregadiolli, Bruna Andressa
    Veron, Anna Christina
    Miesch, Frank A.
    Zaghete, Maria Aparecida
    de Oliveira Graeff, Carlos Frederico
    THIN FILMS FOR SOLAR AND ENERGY TECHNOLOGY VIII, 2016, 9936
  • [48] Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells
    Kang, Rira
    Yeo, Jun-Seok
    Lee, Hyeon Jun
    Lee, Sehyun
    Kang, Minji
    Myoung, NoSoung
    Yim, Sang-Youp
    Oh, Seung-Hwan
    Kim, Dong-Yu
    NANO ENERGY, 2016, 27 : 175 - 184
  • [49] Additive Effects of Guanidinium Iodide on CH3NH3PbI3 Perovskite Solar Cells
    Kishimoto, Taku
    Oku, Takeo
    Suzuki, Atsushi
    Ueoka, Naoki
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (19):
  • [50] Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells
    Abdi-Jalebi, Mojtaba
    Dar, M. Ibrahim
    Sadhanala, Aditya
    Senanayak, Satyaprasad P.
    Gratzel, Michael
    Friend, Richard H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (121):