Chebyshev's bias for products of k primes

被引:5
|
作者
Meng, Xianchang [1 ,2 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ, Canada
[2] Univ Illinois, Dept Math, Urbana, IL 61820 USA
关键词
Chebyshev's bias; Dirichlet L-function; Hankel contour; generalized Riemann hypothesis;
D O I
10.2140/ant.2018.12.305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any k >= 1, we study the distribution of the difference between the number of integers n <= x with omega(n) = k or Omega (n) = k in two different arithmetic progressions, where omega(n) is the number of distinct prime factors of n and Omega (n) is the number of prime factors of n counted with multiplicity. Under some reasonable assumptions, we show that, if k is odd, the integers with Omega (n) = k have preference for quadratic nonresidue classes; and if k is even, such integers have preference for quadratic residue classes. This result confirms a conjecture of Richard Hudson. However, the integers with omega (n) = k always have preference for quadratic residue classes. Moreover, as k increases, the biases become smaller and smaller for both of the two cases.
引用
收藏
页码:305 / 341
页数:37
相关论文
共 50 条
  • [21] On Products of Shifted Primes
    P. Berrizbeitia
    P.D.T.A Elliott
    The Ramanujan Journal, 1998, 2 : 219 - 223
  • [22] Primes, products and polynomials
    Elliott, PDTA
    INVENTIONES MATHEMATICAE, 2002, 149 (03) : 453 - 487
  • [23] Primes, products and polynomials
    P.D.T.A. Elliott
    Inventiones mathematicae, 2002, 149 : 453 - 487
  • [24] On products of shifted primes
    Berrizbeitia, P
    Elliott, PDTA
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 219 - 223
  • [25] PRIMES IN PRODUCTS OF RINGS
    CUNNINGH.J
    PACIFIC JOURNAL OF MATHEMATICS, 1971, 39 (03) : 615 - &
  • [26] Products of shifted primes: Multiplicative analogues of Goldbach's problem
    Elliott, PDTA
    ACTA ARITHMETICA, 1999, 88 (01) : 31 - 50
  • [27] EULER'S FUNCTION ON PRODUCTS OF PRIMES IN A FIXED ARITHMETIC PROGRESSION
    Akbary, Amir
    Francis, Forrest J.
    MATHEMATICS OF COMPUTATION, 2020, 89 (322) : 993 - 1026
  • [28] Primitive Root Bias for Twin Primes
    Garcia, Stephan Ramon
    Kahoro, Elvis
    Luca, Florian
    EXPERIMENTAL MATHEMATICS, 2019, 28 (02) : 151 - 160
  • [29] Products of primes in arithmetic progressions
    Matomaki, Kaisa
    Teravainen, Joni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (808): : 193 - 240
  • [30] On the distribution of products of two primes
    Eddin, Sumaia Saad
    Suzuki, Yuta
    JOURNAL OF NUMBER THEORY, 2020, 214 : 100 - 136