Multilevel methods in space and time for the Navier-Stokes equations

被引:25
|
作者
Burie, JB [1 ]
Marion, M [1 ]
机构
[1] ECOLE CENT LYON,DEPT MATH INFORMAT SYST,F-69131 ECULLY,FRANCE
关键词
multilevel methods; Galerkin method; Navier-Stokes equations;
D O I
10.1137/S0036142994267989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the discretization in time of numerical schemes based on multilevel spatial splittings for the two-dimensional periodic Navier-Stokes equations. The approximate solution is computed as the sum of a low frequency component and a high frequency one. These two terms are advanced in time using different stepsizes. We show improved stability conditions (with respect to the classical Galerkin method). We derive error estimates that indicate that the high frequency term can be integrated less often. We address implementation issues and show that the method should yield a significant gain in computing time.
引用
收藏
页码:1574 / 1599
页数:26
相关论文
共 50 条
  • [1] Multilevel methods in space and time for the navier-stokes equations
    Burie, J.B.
    Marion, M.
    SIAM Journal on Numerical Analysis, 34 (04): : 1574 - 1599
  • [2] Time and Space parallelization of the Navier-Stokes equations
    Albarreal Nunez, Isidoro I.
    Calzada Canalejo, M. Carmen
    Cruz Soto, Jose Luis
    Fernandez Cara, Enrique
    Galo Sanchez, Jose R.
    Marin Beltran, Mercedes
    COMPUTATIONAL & APPLIED MATHEMATICS, 2005, 24 (03): : 417 - 438
  • [3] Galerkin and subspace decomposition methods in space and time for the Navier-Stokes equations
    He, Yinnian
    Hou, Yanren
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (10) : 3218 - 3231
  • [4] MULTILEVEL BDDC FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Hanek, Martin
    Sistek, Jakub
    Burda, Pavel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : C359 - C383
  • [5] METHODS OF SOLVING NAVIER-STOKES EQUATIONS
    KOBELKOV, GM
    DOKLADY AKADEMII NAUK SSSR, 1978, 243 (04): : 843 - 846
  • [6] Adaptive methods for Navier-Stokes equations
    Karamyshev, V
    Kovenya, V
    Sleptsov, A
    COMPUTATIONAL FLUID DYNAMICS '96, 1996, : 301 - 307
  • [7] Space-time decay for solutions of the Navier-Stokes equations
    Kukavica, I
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 : 205 - 222
  • [8] Implicit time-stepping methods for the Navier-Stokes equations
    Badcock, KJ
    Richards, BE
    AIAA JOURNAL, 1996, 34 (03) : 555 - 559
  • [9] PROJECTION METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    SHEN, J
    APPLIED MATHEMATICS LETTERS, 1992, 5 (01) : 35 - 37
  • [10] A MULTILEVEL SOLUTION METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    HASSANZADEH, S
    FORESTI, S
    SONNAD, V
    ADAPTIVE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1989, : 115 - 124