The homogenization of orthorhombic piezoelectric composites by the strong-property-fluctuation theory

被引:4
|
作者
Duncan, Andrew J. [1 ,2 ]
Mackay, Tom G. [1 ,2 ,3 ]
Lakhtakia, Akhlesh [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Penn State Univ, Dept Engn Sci & Mech, NanoMM Nanoengineered Metamat Grp, University Pk, PA 16802 USA
基金
英国工程与自然科学研究理事会;
关键词
ELLIPSOIDAL INCLUSIONS; ELECTROMAGNETIC-WAVES; THIN-FILMS; SCATTERING; MEDIA; FIELD; METAMATERIALS; CONVERGENCE;
D O I
10.1088/1751-8113/42/16/165402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The linear strong-property-fluctuation theory (SPFT) was developed in order to estimate the constitutive parameters of certain homogenized composite materials (HCMs) in a long-wavelength regime. The component materials of the HCM were generally orthorhombic mm2 piezoelectric materials, which were randomly distributed as oriented ellipsoidal particles. At the second-order level of approximation, wherein a two-point correlation function and its associated correlation length characterize the component material distributions, the SPFT estimates of the HCM constitutive parameters were expressed in terms of numerically tractable two-dimensional integrals. Representative numerical calculations revealed that (i) the lowest order SPFT estimates are qualitatively similar to those provided by the corresponding Mori-Tanaka homogenization formalism, but differences between the two estimates become more pronounced as the component particles become more eccentric in shape, and (ii) the second-order SPFT estimate provides a significant correction to the lowest order estimate, which accommodates attenuation due to scattering losses.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] ON THE SCALING PROPERTY IN FLUCTUATION THEORY FOR STABLE LEVY PROCESSES
    Cordero, F.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (04) : 683 - 691
  • [42] Homogenization of nonstationary problems of the theory of strong nonhomogeneous elastic media
    Sandrakov, GV
    DOKLADY AKADEMII NAUK, 1998, 358 (03) : 308 - 311
  • [43] Maxwell homogenization scheme for piezoelectric composites with arbitrarily-oriented spheroidal inhomogeneities
    R. Rodríguez-Ramos
    C. A. Gandarilla-Pérez
    L. Lau-Alfonso
    F. Lebon
    F. J. Sabina
    I. Sevostianov
    Acta Mechanica, 2019, 230 : 3613 - 3632
  • [44] A novel homogenization method for periodic piezoelectric composites via diffused material interface
    Challagulla, Sasank
    Pillai, Ayyappan Unnikrishna
    Rahaman, Mohammad Masiur
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (23) : 5717 - 5736
  • [45] Maxwell homogenization scheme for piezoelectric composites with arbitrarily-oriented spheroidal inhomogeneities
    Rodriguez-Ramos, R.
    Gandarilla-Perez, C. A.
    Lau-Alfonso, L.
    Lebon, F.
    Sabina, F. J.
    Sevostianov, I.
    ACTA MECHANICA, 2019, 230 (10) : 3613 - 3632
  • [46] EFFECTIVE-MEDIUM THEORY OF PIEZOELECTRIC COMPOSITES
    NAN, CW
    JOURNAL OF APPLIED PHYSICS, 1994, 76 (02) : 1155 - 1163
  • [47] Modeling and optimization of actuation strain property of piezoelectric fiber composites
    Wang, Xiao-Yu
    Cong, Qiang
    Lin, Xiu-Juan
    Chen, Hai-Yan
    Wang, Hao-Wei
    Zhou, Ke-Chao
    Zhang, Dou
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2015, 25 (11): : 3113 - 3118
  • [48] Effect of voltage characteristic to driving property of piezoelectric fiber composites
    Yuan X.
    Wang X.-Y.
    Wang H.-W.
    Chen H.-Y.
    Lin X.-J.
    Yan M.-Y.
    Zhang S.-F.
    Zhou K.-C.
    Zhang D.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2019, 29 (02): : 343 - 349
  • [49] The effect of property contrast in two-component piezoelectric composites
    Ahmed, Nihal Thafeem Ahmed Faheem
    Huber, John E.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 316
  • [50] Effective permittivity of wet snow using Strong Fluctuation Theory
    Arslan, A.N.
    Wang, H.
    Pulliainen, J.
    Hallikainen, M.
    Progress in Electromagnetics Research, 2001, 31 : 273 - 290