The homogenization of orthorhombic piezoelectric composites by the strong-property-fluctuation theory

被引:4
|
作者
Duncan, Andrew J. [1 ,2 ]
Mackay, Tom G. [1 ,2 ,3 ]
Lakhtakia, Akhlesh [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Penn State Univ, Dept Engn Sci & Mech, NanoMM Nanoengineered Metamat Grp, University Pk, PA 16802 USA
基金
英国工程与自然科学研究理事会;
关键词
ELLIPSOIDAL INCLUSIONS; ELECTROMAGNETIC-WAVES; THIN-FILMS; SCATTERING; MEDIA; FIELD; METAMATERIALS; CONVERGENCE;
D O I
10.1088/1751-8113/42/16/165402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The linear strong-property-fluctuation theory (SPFT) was developed in order to estimate the constitutive parameters of certain homogenized composite materials (HCMs) in a long-wavelength regime. The component materials of the HCM were generally orthorhombic mm2 piezoelectric materials, which were randomly distributed as oriented ellipsoidal particles. At the second-order level of approximation, wherein a two-point correlation function and its associated correlation length characterize the component material distributions, the SPFT estimates of the HCM constitutive parameters were expressed in terms of numerically tractable two-dimensional integrals. Representative numerical calculations revealed that (i) the lowest order SPFT estimates are qualitatively similar to those provided by the corresponding Mori-Tanaka homogenization formalism, but differences between the two estimates become more pronounced as the component particles become more eccentric in shape, and (ii) the second-order SPFT estimate provides a significant correction to the lowest order estimate, which accommodates attenuation due to scattering losses.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] On the static limit of strong fluctuation theory
    Vinogradov, AP
    Starostenko, SN
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1999, 13 (07) : 993 - 1003
  • [22] A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media
    Mawassy, Nagham
    Reda, Hilal
    Ganghoffer, Jean-Francois
    Eremeyev, Victor A.
    Lakiss, Hassan
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2021, 158
  • [23] STRONG FLUCTUATION THEORY FOR MOIST GRANULAR MEDIA
    STOGRYN, A
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (02): : 78 - 83
  • [24] Influence of a 60° domain structure on the orthorhombic niobate-based piezoelectric property
    Kohei Tsuchida
    Ken-ichi Kakimoto
    Isao Kagomiya
    Journal of the Korean Physical Society, 2013, 62 : 1051 - 1054
  • [25] Influence of a 60° domain structure on the orthorhombic niobate-based piezoelectric property
    Tsuchida, Kohei
    Kakimoto, Ken-ichi
    Kagomiya, Isao
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 62 (07) : 1051 - 1054
  • [26] Extension of Maxwell homogenization scheme for piezoelectric composites containing spheroidal inhomogeneities
    Gandarilla-Perez, C. A.
    Rodriguez-Ramos, R.
    Sevostianov, I.
    Sabina, F. J.
    Bravo-Castillero, J.
    Guinovart-Diaz, R.
    Lau-Alfonso, L.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2018, 135 : 125 - 136
  • [27] THE THEORY OF EFFECTIVE PROPERTIES OF PIEZOELECTRIC COMPOSITES
    KHOROSHUN, LP
    LESHCHENKO, PV
    MECHANICS OF COMPOSITE MATERIALS, 1986, 22 (03) : 295 - 301
  • [28] Deep neural network homogenization of multiphysics behavior for periodic piezoelectric composites
    Chen, Qiang
    Xiao, Ce
    Yang, Zhibo
    Tabet, Jonathan
    Chen, Xuefeng
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 186
  • [29] Construction of piezoelectric and flexoelectric models of composites by asymptotic homogenization and application to laminates
    Nasimsobhan, Maryam
    Ganghoffer, Jean-Francois
    Shamshirsaz, Mahnaz
    MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (04) : 602 - 637
  • [30] A STRONG PROPERTY OF CONNEXITY IN THEORY OF GRAPHS
    VERGNAS, ML
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (12): : 616 - &