Blobbed topological recursion

被引:7
|
作者
Borot, G. [1 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
topological recursion; loop equation; intersection number; matrix model; INTERSECTION THEORY; HURWITZ NUMBERS; INVARIANTS; CURVES; EXPANSION; MODELS; PROOF;
D O I
10.1007/s11232-015-0375-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the formalism and the properties of the blobbed topological recursion, which provides the general solution of a set of abstract loop equations. This procedure extends the topological recursion by introducing extra terms (blobs) in the initial conditions for each multidifferential omega(g,n). We apply this formalism to topological expansion of formal Hermitian matrix models (the blobs are necessary to include arbitrary interactions) and pose some open questions.
引用
收藏
页码:1729 / 1740
页数:12
相关论文
共 50 条
  • [31] A Generalized Topological Recursion for Arbitrary Ramification
    Bouchard, Vincent
    Hutchinson, Joel
    Loliencar, Prachi
    Meiers, Michael
    Rupert, Matthew
    ANNALES HENRI POINCARE, 2014, 15 (01): : 143 - 169
  • [32] Weighted Hurwitz Numbers and Topological Recursion
    A. Alexandrov
    G. Chapuy
    B. Eynard
    J. Harnad
    Communications in Mathematical Physics, 2020, 375 : 237 - 305
  • [33] A Generalized Topological Recursion for Arbitrary Ramification
    Vincent Bouchard
    Joel Hutchinson
    Prachi Loliencar
    Michael Meiers
    Matthew Rupert
    Annales Henri Poincaré, 2014, 15 : 143 - 169
  • [34] Topological recursion for open intersection numbers
    Safnuk, Brad
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2016, 10 (04) : 833 - 857
  • [35] Reconstructing GKZ via Topological Recursion
    Fuji, Hiroyuki
    Iwaki, Kohei
    Manabe, Masahide
    Satake, Ikuo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 839 - 920
  • [36] Topological recursion for irregular spectral curves
    Do, Norman
    Norbury, Paul
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 398 - 426
  • [37] Weighted Hurwitz Numbers and Topological Recursion
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (01) : 237 - 305
  • [38] Reconstructing GKZ via Topological Recursion
    Hiroyuki Fuji
    Kohei Iwaki
    Masahide Manabe
    Ikuo Satake
    Communications in Mathematical Physics, 2019, 371 : 839 - 920
  • [39] On recursion relations in topological string theory
    Andrea Prudenziati
    Journal of High Energy Physics, 2013
  • [40] Integrable Differential Systems of Topological Type and Reconstruction by the Topological Recursion
    Belliard, Raphael
    Eynard, Bertrand
    Marchal, Olivier
    ANNALES HENRI POINCARE, 2017, 18 (10): : 3193 - 3248