Topological recursion for irregular spectral curves

被引:10
|
作者
Do, Norman [1 ]
Norbury, Paul [2 ]
机构
[1] Monash Univ, Sch Math Sci, 9 Rainforest Walk, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
COUNTING LATTICE POINTS; MODULI SPACE; INTERSECTION THEORY; INVARIANTS; EQUATIONS;
D O I
10.1112/jlms.12112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study topological recursion on the irregular spectral curve xy2-xy+1=0, which produces a weighted count of dessins d'enfant. This analysis is then applied to topological recursion on the spectral curve xy2=1, which takes the place of the Airy curve x=y2 to describe asymptotic behaviour of enumerative problems associated to irregular spectral curves. In particular, we calculate all one-point invariants of the spectral curve xy2=1 via a new three-term recursion for the number of dessins d'enfant with one face.
引用
收藏
页码:398 / 426
页数:29
相关论文
共 50 条
  • [1] Quantization of Classical Spectral Curves via Topological Recursion
    Eynard, Bertrand
    Garcia-Failde, Elba
    Marchal, Olivier
    Orantin, Nicolas
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (05)
  • [2] Higher Airy structures and topological recursion for singular spectral curves
    Borot, Gaetan
    Kramer, Reinier
    Schueler, Yannik
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2024, 11 (01): : 1 - 146
  • [3] Topological recursion and mirror curves
    Bouchard, Vincent
    Sulkowski, Piotr
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (05) : 1443 - 1483
  • [4] Quantization of spectral curves for meromorphic Higgs bundles through topological recursion
    Dumitrescu, Olivia
    Mulase, Motohico
    [J]. TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 179 - 229
  • [5] Quantum curves and topological recursion
    Norbury, Paul
    [J]. STRING-MATH 2014, 2016, 93 : 41 - 65
  • [6] Topological recursion and Givental's formalism: Spectral curves for Gromov-Witten theories
    Dunin-Barkowski, P.
    [J]. TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 231 - 295
  • [7] The Harer-Zagier recursion for an irregular spectral curve
    Chekhov, Leonid O.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 110 : 30 - 43
  • [8] Topological Recursion for Symplectic Volumes of Moduli Spaces of Curves
    Bennett, Julia
    Cochran, David
    Safnuk, Brad
    Woskoff, Kaitlin
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (02) : 331 - 358
  • [9] The Kontsevich constants for the volume of the moduli of curves and topological recursion
    Chapman, Kevin M.
    Mulase, Motohico
    Safnuk, Brad
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2011, 5 (03) : 643 - 698
  • [10] Topological recursion for the Poincare polynomial of the combinatorial moduli space of curves
    Mulase, Motohico
    Penkava, Michael
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (03) : 1322 - 1339