Quantum curves and topological recursion

被引:25
|
作者
Norbury, Paul [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
来源
STRING-MATH 2014 | 2016年 / 93卷
关键词
Spectral curve; quantum curve; WKB method; KNOT INVARIANTS; SPECTRAL CURVE; MODULI SPACES; MODELS; VOLUME;
D O I
10.1090/pspum/093/01694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey article describing the relationship between quantum curves and topological recursion. A quantum curve is a Schrodinger operator-like noncommutative analogue of a plane curve which encodes (quantum) enumerative invariants in a new and interesting way. The Schrodinger operator annihilates a wave function which can be constructed using the WKB method, and conjecturally constructed in a rather different way via topological recursion.
引用
收藏
页码:41 / 65
页数:25
相关论文
共 50 条
  • [1] Topological recursion and mirror curves
    Bouchard, Vincent
    Sulkowski, Piotr
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (05) : 1443 - 1483
  • [2] Quantum curves from refined topological recursion: The genus 0 case
    Kidwai, Omar
    Osuga, Kento
    [J]. ADVANCES IN MATHEMATICS, 2023, 432
  • [3] Topological recursion for irregular spectral curves
    Do, Norman
    Norbury, Paul
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 398 - 426
  • [4] Triply mixed coverings of arbitrary base curves: quasimodularity, quantum curves and a mysterious topological recursion
    Hahn, Marvin Anas
    van Ittersum, Jan-Willem M.
    Leid, Felix
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2022, 9 (02): : 239 - 296
  • [5] Topological Recursion for Symplectic Volumes of Moduli Spaces of Curves
    Bennett, Julia
    Cochran, David
    Safnuk, Brad
    Woskoff, Kaitlin
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (02) : 331 - 358
  • [6] Quantization of Classical Spectral Curves via Topological Recursion
    Eynard, Bertrand
    Garcia-Failde, Elba
    Marchal, Olivier
    Orantin, Nicolas
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (05)
  • [7] The Kontsevich constants for the volume of the moduli of curves and topological recursion
    Chapman, Kevin M.
    Mulase, Motohico
    Safnuk, Brad
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2011, 5 (03) : 643 - 698
  • [8] Higher Airy structures and topological recursion for singular spectral curves
    Borot, Gaetan
    Kramer, Reinier
    Schueler, Yannik
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2024, 11 (01): : 1 - 146
  • [9] Topological recursion for the Poincare polynomial of the combinatorial moduli space of curves
    Mulase, Motohico
    Penkava, Michael
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (03) : 1322 - 1339
  • [10] Topological recursion and a quantum curve for monotone Hurwitz numbers
    Do, Norman
    Dyer, Alastair
    Mathews, Daniel V.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 19 - 36