Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems

被引:44
|
作者
Ding, Feng [1 ]
Wang, Xuehai [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Gradient search; Hierarchical identification; Performance analysis; Bilinear-in-parameter system; WIENER NONLINEAR-SYSTEMS; SQUARES IDENTIFICATION ALGORITHM; STATE-SPACE SYSTEMS; AUXILIARY MODEL; HAMMERSTEIN SYSTEMS; FILTERING TECHNIQUE; DYNAMICAL-SYSTEMS; NEWTON ITERATION; DELAY;
D O I
10.1007/s00034-016-0367-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the parameter identification for a special class of nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical identification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is presented. The basic idea is to decompose a bilinear-in-parameter system into two subsystems and to derive the HSG identification algorithm for estimating the system parameters by replacing the unknown variables in the information vectors with their estimates obtained at the previous time. The convergence analysis of the proposed algorithm indicates that the parameter estimation errors converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithm is effective.
引用
收藏
页码:1393 / 1405
页数:13
相关论文
共 50 条
  • [41] Performance Analysis of the Auxiliary Model-Based Stochastic Gradient Parameter Estimation Algorithm for State-Space Systems with One-Step State Delay
    Ding, Feng
    Gu, Ya
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (02) : 585 - 599
  • [42] Performance Analysis of the Auxiliary Model-Based Stochastic Gradient Parameter Estimation Algorithm for State-Space Systems with One-Step State Delay
    Feng Ding
    Ya Gu
    Circuits, Systems, and Signal Processing, 2013, 32 : 585 - 599
  • [43] Three-stage forgetting factor stochastic gradient parameter estimation methods for a class of nonlinear systems
    Ji, Yan
    Kang, Zhen
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (03) : 971 - 987
  • [44] Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model
    Ding, Feng
    Xu, Ling
    Meng, Dandan
    Jin, Xue-Bo
    Alsaedi, Ahmed
    Hayat, Tasawar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [45] Two-stage gradient-based iterative algorithm for bilinear stochastic systems over the moving data window
    Liu, Siyu
    Xie, Li
    Xu, Ling
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (15): : 11021 - 11041
  • [46] Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems
    Zhang, Zhening
    Ding, Feng
    Liu, Xinggao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (03) : 672 - 682
  • [47] Stochastic Gradient Based Iterative Identification Algorithm for a Class of Dual-rate Wiener Systems
    Leng, Jing
    Li, Junpeng
    Hua, Changchun
    Guan, Xinping
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2190 - 2197
  • [48] Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle
    Chen, Huibo
    Xiao, Yongsong
    Ding, Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 1202 - 1210
  • [49] On parameter estimation of partly observed bilinear discrete-time stochastic systems
    Malyarenko, A.
    Vasiliev, V.
    METRIKA, 2012, 75 (03) : 403 - 424
  • [50] On parameter estimation of partly observed bilinear discrete-time stochastic systems
    A. Malyarenko
    V. Vasiliev
    Metrika, 2012, 75 : 403 - 424