Ensemble learning: A survey

被引:1665
|
作者
Sagi, Omer [1 ]
Rokach, Lior [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Software & Informat Syst Engn, Beer Sheva, Israel
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
boosting; classifier combination; ensemble models; machine-learning; mixtures of experts; multiple classifier system; random forest; CLASSIFIER ENSEMBLES; ROTATION FOREST; NEURAL-NETWORKS; CONSENSUS; ALGORITHMS; MODEL; TREES;
D O I
10.1002/widm.1249
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble methods are considered the state-of-the art solution for many machine learning challenges. Such methods improve the predictive performance of a single model by training multiple models and combining their predictions. This paper introduce the concept of ensemble learning, reviews traditional, novel and state-of-the-art ensemble methods and discusses current challenges and trends in the field. This article is categorized under: Algorithmic Development > Model Combining Technologies > Machine Learning Technologies > Classification
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Ensemble Approaches for Regression: A Survey
    Mendes-Moreira, Joao
    Soares, Carlos
    Jorge, Alipio Mario
    De Sousa, Jorge Freire
    ACM COMPUTING SURVEYS, 2012, 45 (01)
  • [22] Survey of Clustering Ensemble Research
    Shao, Chao
    Run, Qingchen
    Computer Engineering and Applications, 2024, 60 (07) : 41 - 57
  • [23] A Survey: Clustering Ensemble Selection
    Min, Liu Li
    Ping, Fan Xiao
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 2760 - 2763
  • [24] Research on Ensemble Learning
    Huang, Faliang
    Xie, Guoqing
    Xiao, Ruliang
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL III, PROCEEDINGS, 2009, : 249 - 252
  • [25] Online ensemble learning
    Oza, NC
    SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 1109 - 1109
  • [26] ENSEMBLE LEARNING ALGORITHMS
    Turan, Selin Ceren
    Cengiz, Mehmet Ali
    JOURNAL OF SCIENCE AND ARTS, 2022, (02): : 459 - 470
  • [27] Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem
    Sara Mohammadi
    Zahra Narimani
    Mitra Ashouri
    Rohoullah Firouzi
    Mohammad Hossein Karimi‐Jafari
    Scientific Reports, 12
  • [28] Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem
    Mohammadi, Sara
    Narimani, Zahra
    Ashouri, Mitra
    Firouzi, Rohoullah
    Karimi-Jafari, Mohammad Hossein
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [29] Ensemble Methodsof Sentiment Analysis: A Survey
    Tiwari, Dimple
    Nagpal, Bharti
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM-2020), 2019, : 150 - 155
  • [30] Analysis of Dropout Learning Regarded as Ensemble Learning
    Hara, Kazuyuki
    Saitoh, Daisuke
    Shouno, Hayaru
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 72 - 79