Ensemble learning: A survey

被引:1665
|
作者
Sagi, Omer [1 ]
Rokach, Lior [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Software & Informat Syst Engn, Beer Sheva, Israel
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
boosting; classifier combination; ensemble models; machine-learning; mixtures of experts; multiple classifier system; random forest; CLASSIFIER ENSEMBLES; ROTATION FOREST; NEURAL-NETWORKS; CONSENSUS; ALGORITHMS; MODEL; TREES;
D O I
10.1002/widm.1249
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble methods are considered the state-of-the art solution for many machine learning challenges. Such methods improve the predictive performance of a single model by training multiple models and combining their predictions. This paper introduce the concept of ensemble learning, reviews traditional, novel and state-of-the-art ensemble methods and discusses current challenges and trends in the field. This article is categorized under: Algorithmic Development > Model Combining Technologies > Machine Learning Technologies > Classification
引用
收藏
页数:18
相关论文
共 50 条
  • [11] A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects
    Mienye, Ibomoiye Domor
    Sun, Yanxia
    IEEE Access, 2022, 10 : 99129 - 99149
  • [12] A Survey on Prediction of Suicidal Ideation Using Machine and Ensemble Learning
    Chadha, Akshma
    Kaushik, Baijnath
    COMPUTER JOURNAL, 2021, 64 (11): : 1617 - 1632
  • [13] Survey of transformers and towards ensemble learning using transformers for natural language processing
    Zhang, Hongzhi
    Shafiq, M. Omair
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [14] Survey of transformers and towards ensemble learning using transformers for natural language processing
    Hongzhi Zhang
    M. Omair Shafiq
    Journal of Big Data, 11
  • [15] Credit Scoring Models Using Ensemble Learning and Classification Approaches: A Comprehensive Survey
    Tripathi, Diwakar
    Shukla, Alok Kumar
    Reddy, B. Ramachandra
    Bopche, Ghanshyam S.
    Chandramohan, D.
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 123 (01) : 785 - 812
  • [16] Credit Scoring Models Using Ensemble Learning and Classification Approaches: A Comprehensive Survey
    Diwakar Tripathi
    Alok Kumar Shukla
    B. Ramachandra Reddy
    Ghanshyam S. Bopche
    D. Chandramohan
    Wireless Personal Communications, 2022, 123 : 785 - 812
  • [17] Ensemble learning
    Lappalainen, H
    Miskin, JW
    ADVANCES IN INDEPENDENT COMPONENT ANALYSIS, 2000, : 75 - 92
  • [18] A Comprehensive Survey on Ensemble Learning-Based Intrusion Detection Approaches in Computer Networks
    Lucas, Thiago Jose
    de Figueiredo, Inae Soares
    Tojeiro, Carlos Alexandre Carvalho
    de Almeida, Alex Marino G.
    Scherer, Rafal
    Brega, Jose Remo F.
    Papa, Joao Paulo
    da Costa, Kelton Augusto Pontara
    IEEE ACCESS, 2023, 11 : 122638 - 122676
  • [19] Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    Webb, GI
    Zheng, ZJ
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2004, 16 (08) : 980 - 991
  • [20] A SURVEY OF CLUSTERING ENSEMBLE ALGORITHMS
    Vega-Pons, Sandro
    Ruiz-Shulcloper, Jose
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (03) : 337 - 372