Ensemble learning: A survey

被引:1665
|
作者
Sagi, Omer [1 ]
Rokach, Lior [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Software & Informat Syst Engn, Beer Sheva, Israel
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
boosting; classifier combination; ensemble models; machine-learning; mixtures of experts; multiple classifier system; random forest; CLASSIFIER ENSEMBLES; ROTATION FOREST; NEURAL-NETWORKS; CONSENSUS; ALGORITHMS; MODEL; TREES;
D O I
10.1002/widm.1249
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble methods are considered the state-of-the art solution for many machine learning challenges. Such methods improve the predictive performance of a single model by training multiple models and combining their predictions. This paper introduce the concept of ensemble learning, reviews traditional, novel and state-of-the-art ensemble methods and discusses current challenges and trends in the field. This article is categorized under: Algorithmic Development > Model Combining Technologies > Machine Learning Technologies > Classification
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A survey on ensemble learning
    Dong, Xibin
    Yu, Zhiwen
    Cao, Wenming
    Shi, Yifan
    Ma, Qianli
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (02) : 241 - 258
  • [2] A survey on ensemble learning
    Xibin Dong
    Zhiwen Yu
    Wenming Cao
    Yifan Shi
    Qianli Ma
    Frontiers of Computer Science, 2020, 14 : 241 - 258
  • [3] Ensemble reinforcement learning: A survey
    Song, Yanjie
    Suganthan, Ponnuthurai Nagaratnam
    Pedrycz, Witold
    Ou, Junwei
    He, Yongming
    Chen, Yingwu
    Wu, Yutong
    APPLIED SOFT COMPUTING, 2023, 149
  • [4] A Survey on ensemble learning under the era of deep learning
    Yang, Yongquan
    Lv, Haijun
    Chen, Ning
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (06) : 5545 - 5589
  • [5] A Survey on ensemble learning under the era of deep learning
    Yongquan Yang
    Haijun Lv
    Ning Chen
    Artificial Intelligence Review, 2023, 56 : 5545 - 5589
  • [6] A Survey on Ensemble Learning for Data Stream Classification
    Gomes, Heitor Murilo
    Barddal, Jean Paul
    Enembreck, Fabricio
    Bifet, Albert
    ACM COMPUTING SURVEYS, 2017, 50 (02)
  • [7] Ensemble learning for data stream analysis: A survey
    Krawczyk, Bartosz
    Minku, Leandro L.
    Gama, Joao
    Stefanowski, Jerzy
    Wozniak, Michal
    INFORMATION FUSION, 2017, 37 : 132 - 156
  • [8] A survey of evolutionary algorithms for supervised ensemble learning
    Cagnini, Henry E. L.
    Das Dores, Silvia C. N.
    Freitas, Alex A.
    Barros, Rodrigo C.
    KNOWLEDGE ENGINEERING REVIEW, 2023, 38 (05):
  • [9] A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects
    Mienye, Ibomoiye Domor
    Sun, Yanxia
    IEEE ACCESS, 2022, 10 : 99129 - 99149
  • [10] Ensemble Multifeatured Deep Learning Models and Applications: A Survey
    Abimannan, Satheesh
    El-Alfy, El-Sayed M.
    Chang, Yue-Shan
    Hussain, Shahid
    Shukla, Saurabh
    Satheesh, Dhivyadharsini
    IEEE ACCESS, 2023, 11 : 107194 - 107217