APPROXIMATION AND QUASICONTINUITY OF BESOV AND TRIEBEL LIZORKIN FUNCTIONS

被引:16
|
作者
Heikkinen, Toni [1 ]
Koskela, Pekka [2 ]
Tuominen, Heli [2 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Espoo, Finland
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Besov space; Triebel-Lizorkin space; fractional Sobolev space; metric measure space; median; quasicontinuity; METRIC MEASURE-SPACES; SOBOLEV FUNCTIONS; SINGULAR-INTEGRALS; MAXIMAL FUNCTIONS; DIFFERENTIABILITY; INEQUALITIES; OSCILLATION; EXTENSION; CAPACITY;
D O I
10.1090/tran/6886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, for 0 < s < 1, 0 < p < infinity, 0 < q < infinity, Hajlasz-Besov and Hajlasz-Triebel-Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the limit of medians, lim(r -> 0) m(u)(gamma)(B(x, r)) = u*(x), exists quasieverywhere and defines a quasicontinuous representative of u. The above limit exists quasieverywhere also for Hajlasz functions u epsilon M-s,M-p, 0 < s <= 1, 0 < p < infinity, but approximation of u in M-s,M-p by discrete (median) convolutions is not in general possible.
引用
收藏
页码:3547 / 3573
页数:27
相关论文
共 50 条