Measure Density and Extension of Besov and Triebel-Lizorkin Functions

被引:31
|
作者
Heikkinen, Toni [1 ]
Ihnatsyeva, Lizaveta [2 ]
Tuominen, Heli [2 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, POB 11100, Aalto 00076, Finland
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
基金
美国国家科学基金会; 芬兰科学院;
关键词
Besov space; Triebel-Lizorkin space; Extension domain; Measure density; Metric measure space; HAJLASZ-SOBOLEV SPACES; METRIC MEASURE-SPACES; HOMOGENEOUS TYPE; REGULAR SUBSETS; INTERPOLATION; INEQUALITIES; EXTENDABILITY; RESTRICTIONS; DOMAINS; RD;
D O I
10.1007/s00041-015-9419-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a domain is an extension domain for a Hajlasz-Besov or for a Hajlasz-Triebel-Lizorkin space if and only if it satisfies a measure density condition. We use a modification of the Whitney extension where integral averages are replaced by median values, which allows us to handle also the case 0 < p < 1. The necessity of the measure density condition is derived from embedding theorems; in the case of Hajlasz-Besov spaces we apply an optimal Lorentz-type Sobolev embedding theorem which we prove using a new interpolation result. This interpolation theorem says that Hajlasz-Besov spaces are intermediate spaces between L-p and Hajlasz-Sobolev spaces. Our results are proved in the setting of a metric measure space, but most of them are new even in the Euclidean setting, for instance, we obtain a characterization of extension domains for classical Besov spaces B-p,q(s), 0 < s < 1, 0 < p < infinity, 0 < q <= infinity, defined via the L-p-modulus of smoothness of a function.
引用
收藏
页码:334 / 382
页数:49
相关论文
共 50 条