Measure Density and Extension of Besov and Triebel-Lizorkin Functions

被引:31
|
作者
Heikkinen, Toni [1 ]
Ihnatsyeva, Lizaveta [2 ]
Tuominen, Heli [2 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, POB 11100, Aalto 00076, Finland
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
基金
美国国家科学基金会; 芬兰科学院;
关键词
Besov space; Triebel-Lizorkin space; Extension domain; Measure density; Metric measure space; HAJLASZ-SOBOLEV SPACES; METRIC MEASURE-SPACES; HOMOGENEOUS TYPE; REGULAR SUBSETS; INTERPOLATION; INEQUALITIES; EXTENDABILITY; RESTRICTIONS; DOMAINS; RD;
D O I
10.1007/s00041-015-9419-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a domain is an extension domain for a Hajlasz-Besov or for a Hajlasz-Triebel-Lizorkin space if and only if it satisfies a measure density condition. We use a modification of the Whitney extension where integral averages are replaced by median values, which allows us to handle also the case 0 < p < 1. The necessity of the measure density condition is derived from embedding theorems; in the case of Hajlasz-Besov spaces we apply an optimal Lorentz-type Sobolev embedding theorem which we prove using a new interpolation result. This interpolation theorem says that Hajlasz-Besov spaces are intermediate spaces between L-p and Hajlasz-Sobolev spaces. Our results are proved in the setting of a metric measure space, but most of them are new even in the Euclidean setting, for instance, we obtain a characterization of extension domains for classical Besov spaces B-p,q(s), 0 < s < 1, 0 < p < infinity, 0 < q <= infinity, defined via the L-p-modulus of smoothness of a function.
引用
收藏
页码:334 / 382
页数:49
相关论文
共 50 条
  • [31] An atomic decomposition of variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    [J]. ARMENIAN JOURNAL OF MATHEMATICS, 2009, 2 (01): : 1 - 12
  • [32] Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    Yuan, Wen
    [J]. POSITIVITY, 2012, 16 (02) : 213 - 244
  • [33] Dahlberg degeneracy for homogeneous Besov and Triebel-Lizorkin spaces
    Bourdaud, Gerard
    Moussai, Madani
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 878 - 894
  • [34] Besov and Triebel-Lizorkin Spaces Associated to Hermite Operators
    The Anh Bui
    Xuan Thinh Duong
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (02) : 405 - 448
  • [35] Duals of Besov and Triebel-Lizorkin Spaces Associated with Operators
    Georgiadis, Athanasios G.
    Kyriazis, George
    [J]. CONSTRUCTIVE APPROXIMATION, 2023, 57 (02) : 547 - 577
  • [36] Capacity in Besov and Triebel-Lizorkin spaces with generalized smoothness
    Karak, Nijjwal
    Mondal, Debarati
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [37] Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces
    Izuki, Mitsuo
    Sawano, Yoshihiro
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) : 103 - 126
  • [38] Besov and Triebel-Lizorkin space estimates for fractional diffusion
    Yabuta, Kozo
    Yang, Minsuk
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2018, 48 (02) : 141 - 158
  • [39] MULTIPLICATION ON BESOV AND TRIEBEL-LIZORKIN SPACES OF POWER WEIGHTS
    Boulares, Hamza Brahim
    Drihem, Douadi
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2023, 68 (02) : 163 - 194
  • [40] On generalized Besov and Triebel-Lizorkin spaces of regular distributions
    Caetano, Antonio M.
    Leopold, Hans-Gerd
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (12) : 2676 - 2703