Metabolic impact assessment for heterologous protein production in Streptomyces lividans based on genome-scale metabolic network modeling

被引:8
|
作者
Lule, Ivan [1 ]
D'Huys, Pieter-Jan [1 ]
Van Mellaert, Lieve [2 ]
Anne, Jozef [2 ]
Bernaerts, Kristel [1 ]
Van Impe, Jan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, Chem & Biochem Proc Technol & Control Sect BioTeC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Microbiol & Immunol, Lab Mol Bacteriol, B-3001 Louvain, Belgium
关键词
Streptomyces lividans; (geometric) Flux balance analysis; Mouse tumor necrosis factor (mTNF-alpha); Heterologous proteins; Genome-scale metabolic network; FLUX BALANCE ANALYSIS; NECROSIS-FACTOR-ALPHA; ESCHERICHIA-COLI; SECRETION; OVEREXPRESSION; COELICOLOR;
D O I
10.1016/j.mbs.2013.08.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The metabolic impact exerted on a microorganism due to heterologous protein production is still poorly understood in Streptomyces lividans. In this present paper, based on exometabolomic data, a proposed genome-scale metabolic network model is used to assess this metabolic impact in S. lividans. Constraint-based modeling results obtained in this work revealed that the metabolic impact due to heterologous protein production is widely distributed in the genome of S. lividans, causing both slow substrate assimilation and a shift in active pathways. Exchange fluxes that are critical for model performance have been identified for metabolites of mouse tumor necrosis factor, histidine, valine and lysine, as well as biomass. Our results unravel the interaction of heterologous protein production with intracellular metabolism of S. lividans, thus, a possible basis for further studies in relieving the metabolic burden via metabolic or bioprocess engineering. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [41] Modeling the metabolic dynamics at the genome-scale by optimized yield analysis
    Luo, Hao
    Li, Peishun
    Ji, Boyang
    Nielsen, Jens
    METABOLIC ENGINEERING, 2023, 75 : 119 - 130
  • [42] Emerging methods for genome-scale metabolic modeling of microbial communities
    Tarzi, Chaimaa
    Zampieri, Guido
    Sullivan, Neil
    Angione, Claudio
    TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2024, 35 (06): : 533 - 548
  • [43] Bayesian Integrative Modeling of Genome-Scale Metabolic and Regulatory Networks
    Mhamdi, Hanen
    Bourdon, Jeremie
    Larhlimi, Abdelhalim
    Elloumi, Mourad
    INFORMATICS-BASEL, 2020, 7 (01):
  • [44] Flux sampling in genome-scale metabolic modeling of microbial communities
    Gelbach, Patrick E.
    Cetin, Handan
    Finley, Stacey D.
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [45] Enhancing Microbiome Research through Genome-Scale Metabolic Modeling
    Ankrah, Nana Y. D.
    Bernstein, David B.
    Biggs, Matthew
    Carey, Maureen
    Engevik, Melinda
    Garcia-Jimenez, Beatriz
    Lakshmanan, Meiyappan
    Pacheco, Alan R.
    Sulheim, Snorre
    Medlock, Gregory L.
    MSYSTEMS, 2021, 6 (06)
  • [46] Genome-Scale Modeling Specifies the Metabolic Capabilities of Rhizophagus irregularis
    Wendering, Philipp
    Nikoloski, Zoran
    MSYSTEMS, 2022, 7 (01)
  • [47] A review of genome-scale metabolic flux modeling of anaerobiosis in biotechnology
    Senger, Ryan S.
    Yen, Jiun Y.
    Fong, Stephen S.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2014, 6 : 33 - 42
  • [48] Flux sampling in genome-scale metabolic modeling of microbial communities
    Patrick E. Gelbach
    Handan Cetin
    Stacey D. Finley
    BMC Bioinformatics, 25
  • [49] Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri
    Feist, Adam M.
    Scholten, Johannes C. M.
    Palsson, Bernhard O.
    Brockman, Fred J.
    Ideker, Trey
    MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) : 2006.0004
  • [50] Understanding the evolution of interspecies metabolic interactions using dynamic genome-scale metabolic modeling
    Badr, Kiumars
    He, Q. Peter
    Wang, Jin
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 450 - 455