A review of genome-scale metabolic flux modeling of anaerobiosis in biotechnology

被引:11
|
作者
Senger, Ryan S. [1 ]
Yen, Jiun Y. [1 ]
Fong, Stephen S. [2 ]
机构
[1] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA
[2] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA USA
基金
美国国家科学基金会;
关键词
IN-SILICO ANALYSIS; SACCHAROMYCES-CEREVISIAE; KLEBSIELLA-OXYTOCA; ESCHERICHIA-COLI; RECONSTRUCTION; ACID; GENERATION; CONVERSION;
D O I
10.1016/j.coche.2014.08.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The genome-scale metabolic flux modeling of anaerobic metabolism relevant to biotechnology has recently expanded in focus. In particular, there is interest in modeling facultative anaerobes (including yeast) to learn how to effectively eliminate microaerobic environments in favor of anaerobiosis. This is advantageous to bioprocessing and maximizes product formation from metabolic pathways that require substantial reducing power. Recent modeling efforts have also focused on CO/CO2 and lignocellulosic sugar utilization for the production of advanced biofuels and chemicals. Several genome-scale models (GEMs), representing diverse metabolic traits, now exist for the non-pathogenic clostridia, methanogen, and Geobacter spp. obligate anaerobes, and microbial consortia interactions are now being modeled. Several new modeling tools to automate GEM construction, incorporate -omics datasets, and derive metabolic engineering strategies can now apply to anaerobiosis.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [1] Flux sampling in genome-scale metabolic modeling of microbial communities
    Gelbach, Patrick E.
    Cetin, Handan
    Finley, Stacey D.
    [J]. BMC BIOINFORMATICS, 2024, 25 (01)
  • [2] Flux sampling in genome-scale metabolic modeling of microbial communities
    Patrick E. Gelbach
    Handan Cetin
    Stacey D. Finley
    [J]. BMC Bioinformatics, 25
  • [3] Genome-scale modeling for metabolic engineering
    Simeonidis, Evangelos
    Price, Nathan D.
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2015, 42 (03) : 327 - 338
  • [4] Applicatons of Genome-Scale Metabolic Models in Biotechnology and Systems Medicine
    Zhang, Cheng
    Hua, Qiang
    [J]. FRONTIERS IN PHYSIOLOGY, 2016, 6
  • [5] Symbolic flux analysis for genome-scale metabolic networks
    Schryer, David W.
    Vendelin, Marko
    Peterson, Pearu
    [J]. BMC SYSTEMS BIOLOGY, 2011, 5
  • [6] Sensitivity Analysis of Genome-Scale Metabolic Flux Prediction
    Niu, Puhua
    Soto, Maria J.
    Huang, Shuai
    Yoon, Byung-Jun
    Dougherty, Edward R.
    Alexander, Francis J.
    Blaby, Ian
    Qian, Xiaoning
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (07) : 751 - 765
  • [7] Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints
    Yen, Jiun Y.
    Nazem-Bokaee, Hadi
    Freedman, Benjamin G.
    Athamneh, Ahmad I. M.
    Senger, Ryan S.
    [J]. BIOTECHNOLOGY JOURNAL, 2013, 8 (05) : 581 - 594
  • [8] 13C Metabolic flux analysis at the genome-scale
    Gopalakrishnan, Saratram
    Maranas, Costas
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [9] Flux coupling analysis of genome-scale metabolic network reconstructions
    Burgard, AP
    Nikolaev, EV
    Schilling, CH
    Maranas, CD
    [J]. GENOME RESEARCH, 2004, 14 (02) : 301 - 312
  • [10] 13C metabolic flux analysis at a genome-scale
    Gopalakrishnan, Saratram
    Maranas, Costas D.
    [J]. METABOLIC ENGINEERING, 2015, 32 : 12 - 22