Universality and thermoelectric transport properties of quantum dot systems

被引:5
|
作者
Aranguren-Quintero, D. F. [1 ]
Ramos, E. [2 ]
Silva-Valencia, J. [1 ]
Figueira, M. S. [3 ]
Oliveira, L. N. [4 ]
Franco, R. [1 ]
机构
[1] Univ Nacl Colombia UNAL, Dept Fis, Bogota 5997, Colombia
[2] Fdn Univ Amer, Div Ciencias Bcis, Bogota, Colombia
[3] Univ Fed Fluminense IF UFF, Inst Fis, Ave Litoranea S-N, BR-24210346 Niteroi, RJ, Brazil
[4] Univ Sao Paulo IFSC USP, Inst Fis Sao Carlos, BR-369 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1103/PhysRevB.103.085112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss the temperature-dependent thermoelectric transport properties of semiconductor nanostructures comprising a quantum dot coupled to quantum wires: the thermal dependence of the electrical conductance, thermal conductance, and thermopower. We explore the universality of the thermoelectric properties in the temperature range associated with the Kondo crossover. In this thermal range, general arguments indicate that any equilibrium property's temperature dependence should be a universal function of the ratio T* = T/T-K, where T-K is the Kondo temperature. Considering the particle-hole symmetric, spin-degenerate Anderson model, the zero-bias electrical conductance has already been shown to map linearly onto a universal conductance through a quantum dot embedded or side-coupled to a quantum wire. Employing rigorous renormalization-group arguments, we calculate universal thermoelectric transport coefficients that allow us to extend this result to the thermopower and the thermal conductance. We present numerical renormalization-group results to illustrate the physics in our findings. Applying the universal thermoelectric coefficients to recent experimental results of the electrical conductance and thermovoltages versus V-gate, at different temperatures in the Kondo regime, we calculate all the thermoelectric properties and obtain simple analytical fitting functions that can be used to predict the experimental results of these properties. However, we cannot check all of them, due to the lack of available experimental results over a broad temperature range.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Thermoelectric transport through a quantum dot: Effects of asymmetry in Kondo channels
    Nguyen, T. K. T.
    Kiselev, M. N.
    Kravtsov, V. E.
    PHYSICAL REVIEW B, 2010, 82 (11):
  • [32] Thermoelectric Transport through the Double Quantum Dot in the Sequential Tunneling Regime
    Szukiewicz, B.
    Wysokinski, K. I.
    ACTA PHYSICA POLONICA A, 2014, 126 (05) : 1159 - 1162
  • [33] Transport properties of a quantum dot with superconducting leads
    Whan, CB
    Orlando, TP
    PHYSICAL REVIEW B, 1996, 54 (08) : R5255 - R5258
  • [34] Electron thermal transport properties of a quantum dot
    Zianni, Xanthippi
    Transistor Scaling- Methods, Materials and Modeling, 2006, 913 : 137 - 142
  • [35] Enhanced thermoelectric properties in boron nitride quantum-dot
    Pan, Changning
    Long, Mengqiu
    He, Jun
    RESULTS IN PHYSICS, 2017, 7 : 1487 - 1491
  • [36] Thermoelectric properties of an interacting quantum dot based heat engine
    Erdman, Paolo Andrea
    Mazza, Francesco
    Bosisio, Riccardo
    Benenti, Giuliano
    Fazio, Rosario
    Taddei, Fabio
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [37] Thermoelectric properties of a quantum dot array connected to metallic electrodes
    Kuo, David M-T
    Chang, Yia-Chung
    NANOTECHNOLOGY, 2013, 24 (17)
  • [38] Thermoelectric cooling properties of quantum dot superlattice embedded nanowires
    Karbaschi, Hossein
    Rashedi, Gholamreza
    Nouri, Nafise
    MATERIALS RESEARCH EXPRESS, 2019, 6 (09)
  • [39] Transport properties of the orbital Kondo effect via quantum dot systems with plural electrons
    Sakano, R.
    Kita, T.
    Ohashi, T.
    Suga, S.
    Kawakami, N.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (02): : 492 - 495
  • [40] Fano interferences in the transport properties of triple quantum dot T-shaped systems
    Tifrea, I.
    Crisan, M.
    Grosu, I.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 2, 2009, 150