Universality and thermoelectric transport properties of quantum dot systems

被引:5
|
作者
Aranguren-Quintero, D. F. [1 ]
Ramos, E. [2 ]
Silva-Valencia, J. [1 ]
Figueira, M. S. [3 ]
Oliveira, L. N. [4 ]
Franco, R. [1 ]
机构
[1] Univ Nacl Colombia UNAL, Dept Fis, Bogota 5997, Colombia
[2] Fdn Univ Amer, Div Ciencias Bcis, Bogota, Colombia
[3] Univ Fed Fluminense IF UFF, Inst Fis, Ave Litoranea S-N, BR-24210346 Niteroi, RJ, Brazil
[4] Univ Sao Paulo IFSC USP, Inst Fis Sao Carlos, BR-369 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1103/PhysRevB.103.085112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss the temperature-dependent thermoelectric transport properties of semiconductor nanostructures comprising a quantum dot coupled to quantum wires: the thermal dependence of the electrical conductance, thermal conductance, and thermopower. We explore the universality of the thermoelectric properties in the temperature range associated with the Kondo crossover. In this thermal range, general arguments indicate that any equilibrium property's temperature dependence should be a universal function of the ratio T* = T/T-K, where T-K is the Kondo temperature. Considering the particle-hole symmetric, spin-degenerate Anderson model, the zero-bias electrical conductance has already been shown to map linearly onto a universal conductance through a quantum dot embedded or side-coupled to a quantum wire. Employing rigorous renormalization-group arguments, we calculate universal thermoelectric transport coefficients that allow us to extend this result to the thermopower and the thermal conductance. We present numerical renormalization-group results to illustrate the physics in our findings. Applying the universal thermoelectric coefficients to recent experimental results of the electrical conductance and thermovoltages versus V-gate, at different temperatures in the Kondo regime, we calculate all the thermoelectric properties and obtain simple analytical fitting functions that can be used to predict the experimental results of these properties. However, we cannot check all of them, due to the lack of available experimental results over a broad temperature range.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Thermoelectric properties of Quantum Dot-based devices
    Talbo, V.
    Dollfus, P.
    Saint-Martin, J.
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2018,
  • [22] Thermoelectric and thermal rectification properties of quantum dot junctions
    Kuo, David M. -T.
    Chang, Yia-chung
    PHYSICAL REVIEW B, 2010, 81 (20)
  • [23] Bosonic thermoelectric transport and breakdown of universality
    Rancon, A.
    Chin, Cheng
    Levin, K.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [24] Transport properties of a quantum dot and a quantum ring in series
    Minky Seo
    Yunchul Chung
    Journal of the Korean Physical Society, 2018, 72 : 138 - 143
  • [25] Transport properties of a quantum dot and a quantum ring in series
    Seo, Minky
    Chung, Yunchul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (01) : 138 - 143
  • [26] Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime
    Alessandro L. Monteros
    Gurdip S. Uppal
    Stephen R. McMillan
    Mircea Crisan
    Ionel Ţifrea
    The European Physical Journal B, 2014, 87
  • [27] Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime
    Monteros, Alessandro L.
    Uppal, Gurdip S.
    McMillan, Stephen R.
    Crisan, Mircea
    Tifrea, Ionel
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (12):
  • [28] Thermoelectric transport properties of a T-coupled quantum dot: Atomic approach for the finite U case
    Ramos, E.
    Franco, R.
    Silva-Valencia, J.
    Figueira, M. S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 64 : 39 - 44
  • [29] Thermoelectric effects in transport through a quantum dot attached to ferromagnetic electrodes
    Swirkowicz, R.
    Wierzbicki, M.
    Barnas, J.
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2010, 213
  • [30] Magneto-Thermoelectric Transport in Graphene Quantum Dot with Strong Correlations
    Anderson, Laurel E.
    Laitinen, Antti
    Zimmerman, Andrew
    Werkmeister, Thomas
    Shackleton, Henry
    Kruchkov, Alexander
    Taniguchi, Takashi
    Watanabe, Kenji
    Sachdev, Subir
    Kim, Philip
    PHYSICAL REVIEW LETTERS, 2024, 132 (24)