Causal inference with observational data in addiction research

被引:16
|
作者
Chan, Gary C. K. [1 ]
Lim, Carmen [1 ]
Sun, Tianze [1 ]
Stjepanovic, Daniel [1 ]
Connor, Jason [1 ,2 ]
Hall, Wayne [1 ]
Leung, Janni [1 ]
机构
[1] Univ Queensland, Natl Ctr Youth Subst Use Res, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Discipline Psychiat, Fac Med, Brisbane, Qld, Australia
基金
英国医学研究理事会;
关键词
Causal inference; instrumental variable; interrupted time-series analysis; inverse probability treatment weighting; matching; propensity score; MARGINAL STRUCTURAL MODELS; PROPENSITY SCORE; DESIGN;
D O I
10.1111/add.15972
中图分类号
R194 [卫生标准、卫生检查、医药管理];
学科分类号
摘要
Randomized controlled trials (RCTs) are the gold standard for making causal inferences, but RCTs are often not feasible in addiction research for ethical and logistic reasons. Observational data from real-world settings have been increasingly used to guide clinical decisions and public health policies. This paper introduces the potential outcomes framework for causal inference and summarizes well-established causal analysis methods for observational data, including matching, inverse probability treatment weighting, the instrumental variable method and interrupted time-series analysis with controls. It provides examples in addiction research and guidance and analysis codes for conducting these analyses with example data sets.
引用
收藏
页码:2736 / 2744
页数:9
相关论文
共 50 条
  • [21] Causal inference and effect estimation using observational data
    Igelstrom, Erik
    Craig, Peter
    Lewsey, Jim
    Lynch, John
    Pearce, Anna
    Katikireddi, Srinivasa Vittal
    [J]. JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2022, 76 (11): : 960 - 966
  • [22] ASSESSING STATISTICAL METHODS FOR CAUSAL INFERENCE IN OBSERVATIONAL DATA
    Parks, D. C.
    Lin, X.
    Lee, K. R.
    [J]. VALUE IN HEALTH, 2014, 17 (07) : A731 - A731
  • [23] ZaliQL: Causal Inference from Observational Data at Scale
    Salimi, Babak
    Cole, Corey
    Ports, Dan R. K.
    Suciu, Dan
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (12): : 1957 - 1960
  • [24] The Designed Bootstrap for Causal Inference in Big Observational Data
    Yumin Zhang
    Arman Sabbaghi
    [J]. Journal of Statistical Theory and Practice, 2021, 15
  • [25] Causal Inference in Oncology Comparative Effectiveness Research Using Observational Data: Are Instrumental Variables Underutilized?
    Perraillon, Marcelo Coca
    Shih, Ya-Chen Tina
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (13) : 2319 - +
  • [26] Observational research rigour alone does not justify causal inference
    Ejima, Keisuke
    Li, Peng
    Smith, Daniel L., Jr.
    Nagy, Tim R.
    Kadish, Inga
    van Groen, Thomas
    Dawson, John A.
    Yang, Yongbin
    Patki, Amit
    Allison, David B.
    [J]. EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2016, 46 (12) : 985 - 993
  • [27] Causal inference with observational data: A tutorial on propensity score analysis
    Narita, Kaori
    Tena, J. D.
    Detotto, Claudio
    [J]. LEADERSHIP QUARTERLY, 2023, 34 (03):
  • [28] CAUSAL INFERENCE FROM OBSERVATIONAL DATA - A REVIEW OF ENDS AND MEANS
    WOLD, H
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1956, 119 (01): : 28 - 50
  • [29] Causal inference from observational data and target trial emulation
    Jafarzadeh, S. R.
    Neogi, T.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2022, 30 (11) : 1415 - 1417
  • [30] Random Forests Approach for Causal Inference with Clustered Observational Data
    Suk, Youmi
    Kang, Hyunseung
    Kim, Jee-Seon
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (06) : 829 - 852