Causal inference with observational data in addiction research

被引:16
|
作者
Chan, Gary C. K. [1 ]
Lim, Carmen [1 ]
Sun, Tianze [1 ]
Stjepanovic, Daniel [1 ]
Connor, Jason [1 ,2 ]
Hall, Wayne [1 ]
Leung, Janni [1 ]
机构
[1] Univ Queensland, Natl Ctr Youth Subst Use Res, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Discipline Psychiat, Fac Med, Brisbane, Qld, Australia
基金
英国医学研究理事会;
关键词
Causal inference; instrumental variable; interrupted time-series analysis; inverse probability treatment weighting; matching; propensity score; MARGINAL STRUCTURAL MODELS; PROPENSITY SCORE; DESIGN;
D O I
10.1111/add.15972
中图分类号
R194 [卫生标准、卫生检查、医药管理];
学科分类号
摘要
Randomized controlled trials (RCTs) are the gold standard for making causal inferences, but RCTs are often not feasible in addiction research for ethical and logistic reasons. Observational data from real-world settings have been increasingly used to guide clinical decisions and public health policies. This paper introduces the potential outcomes framework for causal inference and summarizes well-established causal analysis methods for observational data, including matching, inverse probability treatment weighting, the instrumental variable method and interrupted time-series analysis with controls. It provides examples in addiction research and guidance and analysis codes for conducting these analyses with example data sets.
引用
收藏
页码:2736 / 2744
页数:9
相关论文
共 50 条
  • [1] Statistical workshop on causal inference with observational data in addiction research - propensity score matching using R
    Chan, Gary C. K.
    Lim, Carmen C. W.
    Sun, Tianze
    Stjepanovic, Daniel
    Connor, Jason P.
    Hall, Wayne
    Leung, Janni
    [J]. DRUG AND ALCOHOL REVIEW, 2022, 41 : S19 - S20
  • [2] Causal inference and observational data
    Ivan Olier
    Yiqiang Zhan
    Xiaoyu Liang
    Victor Volovici
    [J]. BMC Medical Research Methodology, 23
  • [3] Causal inference and observational data
    Olier, Ivan
    Zhan, Yiqiang
    Liang, Xiaoyu
    Volovici, Victor
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [4] Causal inference with observational data
    Nichols, Austin
    [J]. STATA JOURNAL, 2007, 7 (04): : 507 - 541
  • [5] Causal Inference Methods for Intergenerational Research Using Observational Data
    Frach, Leonard
    Jami, Eshim S. S.
    McAdams, Tom A. A.
    Dudbridge, Frank
    Pingault, Jean-Baptiste
    [J]. PSYCHOLOGICAL REVIEW, 2023, 130 (06) : 1688 - 1703
  • [6] Using genetic data to strengthen causal inference in observational research
    Pingault, Jean-Baptiste
    O'Reilly, Paul F.
    Schoeler, Tabea
    Ploubidis, George B.
    Rijsdijk, Fruhling
    Dudbridge, Frank
    [J]. NATURE REVIEWS GENETICS, 2018, 19 (09) : 566 - 580
  • [7] Using genetic data to strengthen causal inference in observational research
    Jean-Baptiste Pingault
    Paul F. O’Reilly
    Tabea Schoeler
    George B. Ploubidis
    Frühling Rijsdijk
    Frank Dudbridge
    [J]. Nature Reviews Genetics, 2018, 19 : 566 - 580
  • [8] Causal inference from observational data in emergency medicine research
    Catoire, Pierre
    Genuer, Robin
    Proust-Lima, Cecile
    [J]. EUROPEAN JOURNAL OF EMERGENCY MEDICINE, 2023, 30 (02) : 67 - 69
  • [9] Causal inference from observational data
    Listl, Stefan
    Juerges, Hendrik
    Watt, Richard G.
    [J]. COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY, 2016, 44 (05) : 409 - 415
  • [10] Causal Inference and Observational Research: The Utility of Twins
    McGue, Matt
    Osler, Merete
    Christensen, Kaare
    [J]. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE, 2010, 5 (05) : 546 - 556