A plug-in bandwidth selector for nonparametric quantile regression

被引:1
|
作者
Conde-Amboage, Mercedes [1 ]
Sanchez-Sellero, Cesar [1 ]
机构
[1] Univ Santiago de Compostela, Models Optimizat Decis Stat & Applicat Res Grp MO, Dept Stat Math Anal & Optimizat, Santiago De Compostela, Spain
关键词
Quantile regression; Bandwidth; Nonparametric regression;
D O I
10.1007/s11749-018-0582-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the framework of quantile regression, local linear smoothing techniques have been studied by several authors, particularly by Yu and Jones (J Am Stat Assoc 93:228-237, 1998). The problem of bandwidth selection was addressed in the literature by the usual approaches, such as cross-validation or plug-in methods. Most of the plug-in methods rely on restrictive assumptions on the quantile regression model in relation to the mean regression, or on parametric assumptions. Here we present a plug-in bandwidth selector for nonparametric quantile regression that is defined from a completely nonparametric approach. To this end, the curvature of the quantile regression function and the integrated squared sparsity (inverse of the conditional density) are both nonparametrically estimated. The new bandwidth selector is shown to work well in different simulated scenarios, particularly when the conditions commonly assumed in the literature are not satisfied. A real data application is also given.
引用
收藏
页码:423 / 450
页数:28
相关论文
共 50 条
  • [41] NONPARAMETRIC QUANTILE REGRESSION WITH CENSORED-DATA
    DABROWSKA, DM
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 252 - 259
  • [42] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [43] Imputation in nonparametric quantile regression with complex data
    Hu, Yanan
    Yang, Yaqi
    Wang, Chunyu
    Tian, Maozai
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 127 : 120 - 130
  • [44] SPECIFICATION TESTING IN NONPARAMETRIC INSTRUMENTAL QUANTILE REGRESSION
    Breunig, Christoph
    [J]. ECONOMETRIC THEORY, 2020, 36 (04) : 583 - 625
  • [45] Nonparametric quantile regression for twice censored data
    Volgushew, Stanislav
    Dette, Holger
    [J]. BERNOULLI, 2013, 19 (03) : 748 - 779
  • [46] Variational Inference for Nonparametric Bayesian Quantile Regression
    Abeywardana, Sachinthaka
    Ramos, Fabio
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1686 - 1692
  • [47] Nonparametric depth and quantile regression for functional data
    Chowdhury, Joydeep
    Chaudhuri, Probal
    [J]. BERNOULLI, 2019, 25 (01) : 395 - 423
  • [48] Bayesian nonparametric quantile regression using splines
    Thompson, Paul
    Cai, Yuzhi
    Moyeed, Rana
    Reeve, Dominic
    Stander, Julian
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 1138 - 1150
  • [49] A Bayesian Nonparametric Approach to Inference for Quantile Regression
    Taddy, Matthew A.
    Kottas, Athanasios
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (03) : 357 - 369
  • [50] Nonparametric estimation of an additive quantile regression model
    Horowitz, JL
    Lee, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1238 - 1249