Bayesian skew-probit regression for binary response data

被引:13
|
作者
Bazan, Jorge L. [1 ]
Romeo, Jose S. [2 ]
Rodrigues, Josemar [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago, Chile
基金
巴西圣保罗研究基金会;
关键词
Skew-probit links; binary regression; Bayesian estimation; power normal distribution; reciprocal power normal distribution; MODEL;
D O I
10.1214/13-BJPS218
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Since many authors have emphasized the need of asymmetric link functions to fit binary regression models, we propose in this work two new skew-probit link functions for the binary response variables. These link functions will be named power probit and reciprocal power probit due to the relation between them including the probit link as a special case. Also, the probit regressions are special cases of the models considered in this work. A Bayesian inference approach using MCMC is developed for real data suggesting that the link functions proposed here are more appropriate than other link functions used in the literature. In addition, simulation study show that the use of probit model will lead to biased estimate of the regression coefficient.
引用
收藏
页码:467 / 482
页数:16
相关论文
共 50 条
  • [21] Scalable Bayesian p-generalized probit and logistic regression
    Ding, Zeyu
    Omlor, Simon
    Ickstadt, Katja
    Munteanu, Alexander
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
  • [22] A BAYESIAN APPROACH TO PARAMETER ESTIMATION IN BINARY LOGIT AND PROBIT MODELS
    Tektas, Derya
    Guenay, Sueleyman
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2008, 37 (02): : 167 - 176
  • [23] Conjugate Bayes for probit regression via unified skew-normal distributions
    Durante, Daniele
    [J]. BIOMETRIKA, 2019, 106 (04) : 765 - 779
  • [24] BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA
    ALBERT, JH
    CHIB, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) : 669 - 679
  • [25] Bayesian approach in model selection for the binary response data
    Dey, DK
    Chang, H
    Ray, SC
    [J]. ADVANCES IN ECONOMETRICS, 1996, 11 : 145 - 175
  • [26] Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification
    Yang Aijun
    Jiang Xuejun
    Liu Pengfei
    Lin Jinguan
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 119 : 241 - 247
  • [27] A Note on Local Likelihood Regression for Binary Response Data
    Okumura, Hidenori
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (05) : 1019 - 1025
  • [28] Trimmed LASSO regression estimator for binary response data
    Sun, Hongwei
    Cui, Yuehua
    Gao, Qian
    Wang, Tong
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 159
  • [29] Bayesian outlier analysis in binary regression
    Souza, Aparecida D. P.
    Migon, Helio S.
    [J]. JOURNAL OF APPLIED STATISTICS, 2010, 37 (08) : 1355 - 1368
  • [30] Bayesian inference for semiparametric binary regression
    Newton, MA
    Czado, C
    Chappell, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 142 - 153