Trimmed LASSO regression estimator for binary response data
被引:3
|
作者:
Sun, Hongwei
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan 030001, Shanxi, Peoples R China
Binzhou Med Univ, Sch Publ Hlth & Management, Dept Hlth Stat, Yantai 264003, Shandong, Peoples R ChinaShanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan 030001, Shanxi, Peoples R China
Sun, Hongwei
[1
,2
]
Cui, Yuehua
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USAShanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan 030001, Shanxi, Peoples R China
Cui, Yuehua
[3
]
论文数: 引用数:
h-index:
机构:
Gao, Qian
[1
]
论文数: 引用数:
h-index:
机构:
Wang, Tong
[1
]
机构:
[1] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan 030001, Shanxi, Peoples R China
[2] Binzhou Med Univ, Sch Publ Hlth & Management, Dept Hlth Stat, Yantai 264003, Shandong, Peoples R China
[3] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
A robust LASSO-type penalized logistic regression based on maximum trimmed likelihood is proposed. The robustness property of the proposed method is stated and proved. A comparison of the performances of the proposed method with regular LASSO was conducted via simulations. (C) 2019 Elsevier B.V. All rights reserved.