Trimmed LASSO regression estimator for binary response data

被引:3
|
作者
Sun, Hongwei [1 ,2 ]
Cui, Yuehua [3 ]
Gao, Qian [1 ]
Wang, Tong [1 ]
机构
[1] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan 030001, Shanxi, Peoples R China
[2] Binzhou Med Univ, Sch Publ Hlth & Management, Dept Hlth Stat, Yantai 264003, Shandong, Peoples R China
[3] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
中国国家自然科学基金;
关键词
Penalized logistic regression; Maximum trimmed likelihood; LASSO; Breakdown point; Variable selection; LOGISTIC-REGRESSION; SELECTION;
D O I
10.1016/j.spl.2019.108679
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A robust LASSO-type penalized logistic regression based on maximum trimmed likelihood is proposed. The robustness property of the proposed method is stated and proved. A comparison of the performances of the proposed method with regular LASSO was conducted via simulations. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Stochastic Restricted LASSO-Type Estimator in the Linear Regression Model
    Kayanan, Manickavasagar
    Wijekoon, Pushpakanthie
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2020, 2020
  • [22] A note on the asymptotic distribution of LASSO estimator for correlated data
    Shuva Gupta
    [J]. Sankhya A, 2012, 74 (1): : 10 - 28
  • [23] Smooth LASSO estimator for the Function-on-Function linear regression model
    Centofanti, Fabio
    Fontana, Matteo
    Lepore, Antonio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [24] Extended least trimmed squares estimator in semiparametric regression models with correlated errors
    Roozbeh, M.
    Babaie-Kafaki, S.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 357 - 372
  • [25] A note on the asymptotic distribution of LASSO estimator for correlated data
    Gupta, Shuva
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2012, 74 (01): : 10 - 28
  • [26] Bayesian adaptive Lasso for quantile regression models with nonignorably missing response data
    Xu, Dengke
    Tang, Niansheng
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (09) : 2727 - 2742
  • [27] A Note on Local Likelihood Regression for Binary Response Data
    Okumura, Hidenori
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (05) : 1019 - 1025
  • [28] Local Linear Estimation of the Trimmed Regression for Censored Data
    Bakhtaoui, Ataouia
    Limam-Belarbi, Faiza
    [J]. FILOMAT, 2022, 36 (14) : 4919 - 4933
  • [29] On the Least Trimmed Squares Estimator
    Mount, David M.
    Netanyahu, Nathan S.
    Piatko, Christine D.
    Silverman, Ruth
    Wu, Angela Y.
    [J]. ALGORITHMICA, 2014, 69 (01) : 148 - 183
  • [30] On the Least Trimmed Squares Estimator
    David M. Mount
    Nathan S. Netanyahu
    Christine D. Piatko
    Ruth Silverman
    Angela Y. Wu
    [J]. Algorithmica, 2014, 69 : 148 - 183